The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors.

Tumour necrosis factor (TNF)-alpha mRNA contains an AU-rich element (ARE) in its 3' untranslated region (3'UTR), which determines its half-life and translational efficiency. In unstimulated macrophages, TNF-alpha mRNA is repressed translationally, and becomes efficiently translated upon cell activation. Gel retardation experiments and screening of a macrophage cDNA expression library with the TNF-alpha ARE allowed the identification of TIA-1-related protein (TIAR), T-cell intracellular antigen-1 (TIA-1) and tristetraprolin (TTP) as TNF-alpha ARE-binding proteins. Whereas TIAR and TIA-1 bind the TNF-alpha ARE independently of the activation state of macrophages, the TTP-ARE complex is detectable upon stimulation with lipopolysaccharide (LPS). Moreover, treatment of LPS-induced macrophage extracts with phosphatase significantly abrogates TTP binding to the TNF-alpha ARE, indicating that TTP phosphorylation is required for ARE binding. Carballo, Lai and Blackshear [(1998) Science 281, 1001-1005] showed that TTP was a TNF-alpha mRNA destabilizer. In contrast, TIA-1, and most probably TIAR, acts as a TNF-alpha mRNA translational silencer. A two-hybrid screening with TIAR and TIA-1 revealed the capacity of these proteins to interact with other RNA-binding proteins. Interestingly, TIAR and TIA-1 are not engaged in the same interaction, indicating for the first time that TIAR and TIA-1 can be functionally distinct. These findings also suggest that ARE-binding proteins interact with RNA as multimeric complexes, which might define their function and their sequence specificity.[1]

References

  1. AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Zhang, T., Kruys, V., Huez, G., Gueydan, C. Biochem. Soc. Trans. (2002) [Pubmed]
 
WikiGenes - Universities