The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effects of 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one on synaptic vesicle cycling at the frog neuromuscular junction.

Inositol phospholipids are thought to play an important regulatory role in synaptic membrane traffic. We investigated the effects of perturbing 3-phosphoinositide metabolism on neurotransmission at the frog neuromuscular junction. We used the reversible phosphoinositide-3 kinase ( PI3K) inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one [LY294002 (LY)] and we examined its effects by intracellular recording, fluorescence imaging with styryl dyes (FM 1-43 and FM 2-10), calcium imaging, and electron microscopy. LY treatment reversibly inhibited vesicle cycling; electron micrographs indicated a dramatic reduction in the number of vesicles, balanced by the appearance of numerous cisternas. LY wash-off reverted the phenotype; terminals were refilled with vesicles, and they resumed normal FM 1-43 uptake and release. Surprisingly, LY treatment also enhanced the frequency of spontaneous release up to 100-fold in a calcium-independent manner. LY evoked similar effects in normal frog Ringer's solution, Ca-free Ringer's solution, and BAPTA AM-pretreated preparations; imaging of nerve terminals loaded with the calcium-sensitive fluorescent dye fluo-3 showed no significant change in fluorescence intensity during LY treatment. FM 1-43 imaging data suggested that LY evoked the cycling of 70-90% of all vesicles. The LY-induced effect on spontaneous release was reproduced by the casein kinase 2 inhibitor 5,6-dichlorobenzimidazole riboside but not, however, by the PI3K inhibitor wortmannin. Because LY has been shown recently to potently inhibit casein kinase 2 as well as PI3K, we hypothesize that casein kinase 2 inhibition is responsible for the enhancement of spontaneous release, whereas PI3K inhibition induces the block of vesicle cycling.[1]


WikiGenes - Universities