The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The role of the phenethyl ester of caffeic acid (CAPE) in the inhibition of rat lung cyclooxygenase activity by propolis.

In this study we investigated the effect of an ethanolic extract of propolis, with and without CAPE, and some of its components on cyclooxygenase ( COX) activity. Propolis (0.00003-0.03%) significantly and concentration-dependently inhibited COX activity from lung homogenate of saline- or LPS-treated rats. Same results were obtained with CAPE (0.1-100 microM). COX activity from lung homogenate of saline- or LPS-treated rats was also inhibited by galangin (0.1-100 microM), although the inhibition induced by the lowest concentration was not significant. Caffeic, ferulic, cinnamic and chlorogenic acids and pinocembrin, (0.1-100 microM) did not affect COX activity. The inhibition curves showed that CAPE and propolis were equipotent inhibitors, whereas galangin was significantly (P<0.001) less potent than propolis and CAPE. In order to better investigate the role of CAPE, we tested the action of an ethanolic extract of propolis (0.00003-0.03%) without CAPE. This extract significantly and concentration-dependently inhibited COX activity from lung homogenate of saline- or LPS-treated rats, however, it resulted to be approximately 10 times less potent than the extract containing CAPE. The analysis of the inhibition curves of the extract with and without CAPE showed a significant (P<0.001) difference. These results suggest that both CAPE and galangin contribute to the overall activity of propolis, CAPE being more effective.[1]

References

  1. The role of the phenethyl ester of caffeic acid (CAPE) in the inhibition of rat lung cyclooxygenase activity by propolis. Rossi, A., Longo, R., Russo, A., Borrelli, F., Sautebin, L. Fitoterapia (2002) [Pubmed]
 
WikiGenes - Universities