The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Caffeate     (E)-3-(3,4- dihydroxyphenyl)prop-2-enoic acid

Synonyms: trans-Caffeate, CHEMBL145, PubChem8262, caffeic acid, CCRIS 847, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-

  • Previous work from this laboratory established that caffeic acid esters, present in the propolis of honey bee hives, are potent inhibitors of human colon tumor cell growth, suggesting that these compounds may possess antitumor activity against colon carcinogenesis [1].
  • Previous studies from this laboratory have established that caffeic acid esters present in propolis, a natural resin produced by honey bees, are potent inhibitors of human colon adenocarcinoma cell growth, carcinogen-induced biochemical changes, and preneoplastic lesions in the rat colon [2].
  • Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells [3].
  • Recombinant COMT expressed in Escherichia coli exhibited the highest V(max)/K(m) values with 5-hydroxyconiferaldehyde and caffeoyl aldehyde, and the lowest with caffeic acid [4].
  • The protective effects of selected members from a series of caffeic acid esters and flavonoids were tested in various toxicity paradigms using U937 cells, previously shown to be sensitive to either iron chelators or bona fide radical scavengers or to both classes of compounds [5].

High impact information on 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-


Chemical compound and disease context of 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-


Biological context of 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-


Anatomical context of 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-

  • Thus, the current investigation showed caffeic acid to exert carcinogenic activity for the forestomach squamous cell epithelium in both sexes of F344 rats and C57BL/6N x C3H/HeN F1 mice, for the renal tubular cell in male rats and female mice, and for the alveolar type II cell in male mice [20].
  • In addition, the p43-stimulated IL-12 induction and NF-kappaB DNA-binding activity were significantly suppressed by caffeic acid phenethyl ester and BAY11-7082, both inhibitors of NF-kappaB activation, indicating that p43 induced the production of IL-12 in macrophages mainly via the activation of NF-kappaB [21].
  • Modulation of ceramide-induced NF-kappaB binding activity and apoptotic response by caffeic acid in U937 cells: comparison with other antioxidants [22].
  • In this work, homozygous tobacco (Nicotiana tabacum) lines transformed with cinnamoyl-coenzyme A reductase (CCR) or caffeic acid/5-hydroxy ferulic acid-O-methyltransferase I (COMT I) antisense sequences have been crossed and enzyme activities, lignin synthesis, and cell wall structure of the progeny have been analyzed [23].
  • In whole-cell and single-channel patch-clamp recordings from bovine adrenal fasciculata cells, it was discovered that selected caffeic acid derivatives dramatically enhanced the activity of background TREK-1 K+ channels [24].

Associations of 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)- with other chemical compounds


Gene context of 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-


Analytical, diagnostic and therapeutic context of 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-


  1. Inhibitory effect of caffeic acid esters on azoxymethane-induced biochemical changes and aberrant crypt foci formation in rat colon. Rao, C.V., Desai, D., Simi, B., Kulkarni, N., Amin, S., Reddy, B.S. Cancer Res. (1993) [Pubmed]
  2. Chemoprevention of colon carcinogenesis by phenylethyl-3-methylcaffeate. Rao, C.V., Desai, D., Rivenson, A., Simi, B., Amin, S., Reddy, B.S. Cancer Res. (1995) [Pubmed]
  3. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells. Watabe, M., Hishikawa, K., Takayanagi, A., Shimizu, N., Nakaki, T. J. Biol. Chem. (2004) [Pubmed]
  4. Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Parvathi, K., Chen, F., Guo, D., Blount, J.W., Dixon, R.A. Plant J. (2001) [Pubmed]
  5. Plant-derived phenolic compounds prevent the DNA single-strand breakage and cytotoxicity induced by tert-butylhydroperoxide via an iron-chelating mechanism. Sestili, P., Diamantini, G., Bedini, A., Cerioni, L., Tommasini, I., Tarzia, G., Cantoni, O. Biochem. J. (2002) [Pubmed]
  6. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. impacts on lignin structure and implications for the biosynthesis of G and S lignin. Guo, D., Chen, F., Inoue, K., Blount, J.W., Dixon, R.A. Plant Cell (2001) [Pubmed]
  7. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Natarajan, K., Singh, S., Burke, T.R., Grunberger, D., Aggarwal, B.B. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  8. Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Michaluart, P., Masferrer, J.L., Carothers, A.M., Subbaramaiah, K., Zweifel, B.S., Koboldt, C., Mestre, J.R., Grunberger, D., Sacks, P.G., Tanabe, T., Dannenberg, A.J. Cancer Res. (1999) [Pubmed]
  9. Aging-associated up-regulation of neuronal 5-lipoxygenase expression: putative role in neuronal vulnerability. Uz, T., Pesold, C., Longone, P., Manev, H. FASEB J. (1998) [Pubmed]
  10. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Lee, W.J., Zhu, B.T. Carcinogenesis (2006) [Pubmed]
  11. Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells. Lee, Y.J., Kuo, H.C., Chu, C.Y., Wang, C.J., Lin, W.C., Tseng, T.H. Biochem. Pharmacol. (2003) [Pubmed]
  12. Selective inhibition of 5-lipoxygenase by natural compounds isolated from Chinese plants, Artemisia rubripes Nakai. Koshihara, Y., Neichi, T., Murota, S., Lao, A., Fujimoto, Y., Tatsuno, T. FEBS Lett. (1983) [Pubmed]
  13. Functional expression of an Arabidopsis cDNA clone encoding a flavonol 3'-O-methyltransferase and characterization of the gene product. Muzac, I., Wang, J., Anzellotti, D., Zhang, H., Ibrahim, R.K. Arch. Biochem. Biophys. (2000) [Pubmed]
  14. Mutagenic activity of some coffee flavor ingredients. Fung, V.A., Cameron, T.P., Hughes, T.J., Kirby, P.E., Dunkel, V.C. Mutat. Res. (1988) [Pubmed]
  15. Morphine enhances hepatitis C virus (HCV) replicon expression. Li, Y., Zhang, T., Douglas, S.D., Lai, J.P., Xiao, W.D., Pleasure, D.E., Ho, W.Z. Am. J. Pathol. (2003) [Pubmed]
  16. Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats. Ilhan, A., Akyol, O., Gurel, A., Armutcu, F., Iraz, M., Oztas, E. Free Radic. Biol. Med. (2004) [Pubmed]
  17. Effect of caffeic acid on tert-butyl hydroperoxide-induced oxidative stress in U937. Nardini, M., Pisu, P., Gentili, V., Natella, F., Di Felice, M., Piccolella, E., Scaccini, C. Free Radic. Biol. Med. (1998) [Pubmed]
  18. Novel biomarkers of the metabolism of caffeic acid derivatives in vivo. Rechner, A.R., Spencer, J.P., Kuhnle, G., Hahn, U., Rice-Evans, C.A. Free Radic. Biol. Med. (2001) [Pubmed]
  19. Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase in relation to lignification. Inoue, K., Sewalt, V.J., Murray, G.B., Ni, W., Stürzer, C., Dixon, R.A. Plant Physiol. (1998) [Pubmed]
  20. Forestomach and kidney carcinogenicity of caffeic acid in F344 rats and C57BL/6N x C3H/HeN F1 mice. Hagiwara, A., Hirose, M., Takahashi, S., Ogawa, K., Shirai, T., Ito, N. Cancer Res. (1991) [Pubmed]
  21. The novel cytokine p43 induces IL-12 production in macrophages via NF-kappaB activation, leading to enhanced IFN-gamma production in CD4+ T cells. Kim, E., Kim, S.H., Kim, S., Kim, T.S. J. Immunol. (2006) [Pubmed]
  22. Modulation of ceramide-induced NF-kappaB binding activity and apoptotic response by caffeic acid in U937 cells: comparison with other antioxidants. Nardini, M., Leonardi, F., Scaccini, C., Virgili, F. Free Radic. Biol. Med. (2001) [Pubmed]
  23. Simultaneous down-regulation of caffeic/5-hydroxy ferulic acid-O-methyltransferase I and cinnamoyl-coenzyme A reductase in the progeny from a cross between tobacco lines homozygous for each transgene. Consequences for plant development and lignin synthesis. Pinçon, G., Chabannes, M., Lapierre, C., Pollet, B., Ruel, K., Joseleau, J.P., Boudet, A.M., Legrand, M. Plant Physiol. (2001) [Pubmed]
  24. Caffeic acid esters activate TREK-1 potassium channels and inhibit depolarization-dependent secretion. Danthi, S., Enyeart, J.A., Enyeart, J.J. Mol. Pharmacol. (2004) [Pubmed]
  25. Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Huang, M.T., Lysz, T., Ferraro, T., Abidi, T.F., Laskin, J.D., Conney, A.H. Cancer Res. (1991) [Pubmed]
  26. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. Meyermans, H., Morreel, K., Lapierre, C., Pollet, B., De Bruyn, A., Busson, R., Herdewijn, P., Devreese, B., Van Beeumen, J., Marita, J.M., Ralph, J., Chen, C., Burggraeve, B., Van Montagu, M., Messens, E., Boerjan, W. J. Biol. Chem. (2000) [Pubmed]
  27. Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast. Nair, R.B., Xia, Q., Kartha, C.J., Kurylo, E., Hirji, R.N., Datla, R., Selvaraj, G. Plant Physiol. (2002) [Pubmed]
  28. Induction of endothelial iNOS by 4-hydroxyhexenal through NF-kappaB activation. Lee, J.Y., Je, J.H., Jung, K.J., Yu, B.P., Chung, H.Y. Free Radic. Biol. Med. (2004) [Pubmed]
  29. Leishmania major amastigotes induce p50/c-Rel NF-kappa B transcription factor in human macrophages: involvement in cytokine synthesis. Guizani-Tabbane, L., Ben-Aissa, K., Belghith, M., Sassi, A., Dellagi, K. Infect. Immun. (2004) [Pubmed]
  30. Caffeic acid attenuates the decrease in cortical BDNF mRNA expression induced by exposure to forced swimming stress in mice. Takeda, H., Tsuji, M., Yamada, T., Masuya, J., Matsushita, K., Tahara, M., Iimori, M., Matsumiya, T. Eur. J. Pharmacol. (2006) [Pubmed]
  31. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling. Xiang, D., Wang, D., He, Y., Xie, J., Zhong, Z., Li, Z., Xie, J. Anticancer Drugs (2006) [Pubmed]
  32. Downregulation of Rac1 activation by caffeic acid in aortic smooth muscle cells. Xu, J.W., Ikeda, K., Kobayakawa, A., Ikami, T., Kayano, Y., Mitani, T., Yamori, Y. Life Sci. (2005) [Pubmed]
  33. Phorbol 12-myristate 13-acetate up-regulates the transcription of MUC2 intestinal mucin via Ras, ERK, and NF-kappa B. Lee, H.W., Ahn, D.H., Crawley, S.C., Li, J.D., Gum, J.R., Basbaum, C.B., Fan, N.Q., Szymkowski, D.E., Han, S.Y., Lee, B.H., Sleisenger, M.H., Kim, Y.S. J. Biol. Chem. (2002) [Pubmed]
  34. Caffeic acid causes metal-dependent damage to cellular and isolated DNA through H2O2 formation. Inoue, S., Ito, K., Yamamoto, K., Kawanishi, S. Carcinogenesis (1992) [Pubmed]
  35. Substrate specificity of catechol oxidase from Lycopus europaeus and characterization of the bioproducts of enzymic caffeic acid oxidation. Rompel, A., Fischer, H., Meiwes, D., Büldt-Karentzopoulos, K., Magrini, A., Eicken, C., Gerdemann, C., Krebs, B. FEBS Lett. (1999) [Pubmed]
  36. Product analysis of caffeic acid oxidation by on-line electrochemistry/electrospray ionization mass spectrometry. Arakawa, R., Yamaguchi, M., Hotta, H., Osakai, T., Kimoto, T. J. Am. Soc. Mass Spectrom. (2004) [Pubmed]
  37. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. Jung, U.J., Lee, M.K., Park, Y.B., Jeon, S.M., Choi, M.S. J. Pharmacol. Exp. Ther. (2006) [Pubmed]
WikiGenes - Universities