Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain.
Sterols accelerate degradation of the ER enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMG CoA reductase), which catalyzes a rate-controlling step in cholesterol biosynthesis. This degradation contributes to feedback inhibition of synthesis of cholesterol and nonsterol isoprenoids. Here, we show that degradation of HMG CoA reductase is accelerated by the sterol- induced binding of its sterol-sensing domain to the ER protein insig-1. Accelerated degradation is inhibited by overexpression of the sterol-sensing domain of SREBP cleavage-activating protein (SCAP), suggesting that both proteins bind to the same site on insig-1. Whereas insig-1 binding to SCAP leads to ER retention, insig-1 binding to HMG CoA reductase leads to accelerated degradation that is blocked by proteasome inhibitors. Insig-1 appears to play an essential role in the sterol-mediated trafficking of two proteins with sterol-sensing domains, HMG CoA reductase and SCAP.[1]References
- Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Sever, N., Yang, T., Brown, M.S., Goldstein, J.L., DeBose-Boyd, R.A. Mol. Cell (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg