The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

gonan-3-ol     2,3,4,5,6,7,8,9,10,11,12,13,14 ,15,16,17...

Synonyms: SureCN4544647, AC1L1AQQ, C00370
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of sterol

  • Microarray analysis revealed that Sre1 activates sterol biosynthetic enzymes as in mammals, and, surprisingly, Sre1 also stimulates transcription of genes required for adaptation to hypoxia [1].
  • Using human hepatoma cells, we show that these compounds act through the sterol-responsive element of the LDLr promoter and activate the SCAP/SREBP pathway, leading to increased LDLr expression and activity, even in presence of excess of sterols [2].
  • A new C26 sterol, 22-trans-27-norcholesta-5,22-dien-3 beta-ol, was found in the urine of a 6-year-old girl, with a clinical diagnosis of congenital adrenal hyperplasia of the salt losing type, accompanied by symptoms of mixed sex anatomy and skin pigmentation [3].
  • Hepatic sterol-sensitive genes have mechanisms to sense hypercholesterolemia that do not require classical receptor-mediated lipoprotein uptake [4].
  • 7-Dehydrocholesterol-dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome [5].
 

Psychiatry related information on sterol

 

High impact information on sterol

  • The topics reviewed in this chapter include the pathophysiological roles of ACAT, the biochemistry and molecular biology of the ACAT protein and the ACAT gene, and the mode of regulation by sterol or nonsterol agents in mammalian cells [11].
  • Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites [12].
  • Regulated intramembrane proteolysis (RIP) of endoplasmic reticulum (ER) membrane-anchored transcription factors is known to maintain sterol homeostasis and to mediate the unfolded protein response (UPR) [13].
  • Specifically, lanosterol synthase in the sterol biosynthetic pathway was identified as a target of the antianginal drug molsidomine, which may explain its cholesterol-lowering effects [14].
  • This diminished response occurs at sterol levels sufficient for normal autoprocessing of Hh protein, which requires cholesterol as cofactor and covalent adduct [15].
 

Chemical compound and disease context of sterol

 

Biological context of sterol

 

Anatomical context of sterol

 

Associations of sterol with other chemical compounds

 

Gene context of sterol

  • SCAP has multiple membrane-spanning regions, five of which resemble the sterol-sensing domain of HMG CoA reductase, an endoplasmic reticulum enzyme whose degradation is accelerated by sterols [22].
  • They do so by altering the predicted sterol/lipid-binding domains of ATHB14 and ATHB9, proteins of previously unknown function that also contain DNA-binding motifs [33].
  • These data suggest that ABCG5 and ABCG8 normally cooperate to limit intestinal absorption and to promote biliary excretion of sterols, and that mutated forms of these transporters predispose to sterol accumulation and atherosclerosis [34].
  • The 1278-amino acid NPC1 protein has sequence similarity to the morphogen receptor PATCHED and the putative sterol-sensing regions of SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase [35].
  • Deletion of ARE2 reduced sterol ester levels to approximately 25 percent of normal levels, whereas disruption of ARE1 did not affect sterol ester biosynthesis [36].
 

Analytical, diagnostic and therapeutic context of sterol

  • These data localize the sterol-regulated step to budding of SCAP from ER and provide a system for biochemical dissection [26].
  • However, biliary plant sterol secretion was markedly different: with the perfusion of either VLDL or LDL there was no increase in plant sterols in bile, but with perfusion of HDL, the secretion of plant sterols was increased two- to threefold (P = 0.0005) [37].
  • Considering the normal serum content of the parent vitamin and its metabolites to be approximately 0.1-0.2 mum, these immunoassay data confirm previous saturation analyses of human serum antiricketic sterol-binding capacity and suggest that greater than 95% of DBP circulates as the apoprotein under normal conditions [38].
  • Sterol content and structure were analyzed using gas chromatography/mass spectrometry (GC/MS) [39].
  • Key regulators of sterol metabolism were investigated by Northern and Western blot analyses or enzyme activity assays [40].

References

  1. SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Hughes, A.L., Todd, B.L., Espenshade, P.J. Cell (2005) [Pubmed]
  2. SCAP ligands are potent new lipid-lowering drugs. Grand-Perret, T., Bouillot, A., Perrot, A., Commans, S., Walker, M., Issandou, M. Nat. Med. (2001) [Pubmed]
  3. C26 sterol in a human urine. Ikekawa, N., Fujimoto, Y., Isiguro, M., Suwa, S., Hirayama, Y., Mizunuma, H. Science (1979) [Pubmed]
  4. Profound induction of hepatic cholesteryl ester transfer protein transgene expression in apolipoprotein E and low density lipoprotein receptor gene knockout mice. A novel mechanism signals changes in plasma cholesterol levels. Masucci-Magoulas, L., Plump, A., Jiang, X.C., Walsh, A., Breslow, J.L., Tall, A.R. J. Clin. Invest. (1996) [Pubmed]
  5. 7-Dehydrocholesterol-dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome. Fitzky, B.U., Moebius, F.F., Asaoka, H., Waage-Baudet, H., Xu, L., Xu, G., Maeda, N., Kluckman, K., Hiller, S., Yu, H., Batta, A.K., Shefer, S., Chen, T., Salen, G., Sulik, K., Simoni, R.D., Ness, G.C., Glossmann, H., Patel, S.B., Tint, G.S. J. Clin. Invest. (2001) [Pubmed]
  6. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Hoppe, T., Matuschewski, K., Rape, M., Schlenker, S., Ulrich, H.D., Jentsch, S. Cell (2000) [Pubmed]
  7. Effects of chronic dietary beer and ethanol consumption on experimental colonic carcinogenesis by azoxymethane in rats. Hamilton, S.R., Hyland, J., McAvinchey, D., Chaudhry, Y., Hartka, L., Kim, H.T., Cichon, P., Floyd, J., Turjman, N., Kessie, G. Cancer Res. (1987) [Pubmed]
  8. Diet, nutrition intake, and metabolism in populations at high and low risk for colon cancer. Metabolism of neutral sterols. Nair, P.P., Turjman, N., Goodman, G.T., Guidry, C., Calkins, B.M. Am. J. Clin. Nutr. (1984) [Pubmed]
  9. Isolation of various forms of sterol beta-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex. Khabazian, I., Bains, J.S., Williams, D.E., Cheung, J., Wilson, J.M., Pasqualotto, B.A., Pelech, S.L., Andersen, R.J., Wang, Y.T., Liu, L., Nagai, A., Kim, S.U., Craig, U.K., Shaw, C.A. J. Neurochem. (2002) [Pubmed]
  10. Skeletal muscle sterol regulatory element binding protein-1c decreases with food deprivation and increases with feeding in rats. Bizeau, M.E., MacLean, P.S., Johnson, G.C., Wei, Y. J. Nutr. (2003) [Pubmed]
  11. Acyl-coenzyme A:cholesterol acyltransferase. Chang, T.Y., Chang, C.C., Cheng, D. Annu. Rev. Biochem. (1997) [Pubmed]
  12. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Motola, D.L., Cummins, C.L., Rottiers, V., Sharma, K.K., Li, T., Li, Y., Suino-Powell, K., Xu, H.E., Auchus, R.J., Antebi, A., Mangelsdorf, D.J. Cell (2006) [Pubmed]
  13. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Zhang, K., Shen, X., Wu, J., Sakaki, K., Saunders, T., Rutkowski, D.T., Back, S.H., Kaufman, R.J. Cell (2006) [Pubmed]
  14. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Lum, P.Y., Armour, C.D., Stepaniants, S.B., Cavet, G., Wolf, M.K., Butler, J.S., Hinshaw, J.C., Garnier, P., Prestwich, G.D., Leonardson, A., Garrett-Engele, P., Rush, C.M., Bard, M., Schimmack, G., Phillips, J.W., Roberts, C.J., Shoemaker, D.D. Cell (2004) [Pubmed]
  15. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Cooper, M.K., Wassif, C.A., Krakowiak, P.A., Taipale, J., Gong, R., Kelley, R.I., Porter, F.D., Beachy, P.A. Nat. Genet. (2003) [Pubmed]
  16. Severe facial clefting in Insig-deficient mouse embryos caused by sterol accumulation and reversed by lovastatin. Engelking, L.J., Evers, B.M., Richardson, J.A., Goldstein, J.L., Brown, M.S., Liang, G. J. Clin. Invest. (2006) [Pubmed]
  17. Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia and xanthomatosis. Salen, G., Starc, T., Sisk, C.M., Patel, S.B. Gastroenterology (2006) [Pubmed]
  18. Sterol methyltransferase 1 controls the level of cholesterol in plants. Diener, A.C., Li, H., Zhou, W., Whoriskey, W.J., Nes, W.D., Fink, G.R. Plant Cell (2000) [Pubmed]
  19. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Ettinger, S.L., Sobel, R., Whitmore, T.G., Akbari, M., Bradley, D.R., Gleave, M.E., Nelson, C.C. Cancer Res. (2004) [Pubmed]
  20. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C., London, E. J. Biol. Chem. (2001) [Pubmed]
  21. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Yokoyama, C., Wang, X., Briggs, M.R., Admon, A., Wu, J., Hua, X., Goldstein, J.L., Brown, M.S. Cell (1993) [Pubmed]
  22. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Hua, X., Nohturfft, A., Goldstein, J.L., Brown, M.S. Cell (1996) [Pubmed]
  23. Functional discovery via a compendium of expression profiles. Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A.M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., Friend, S.H. Cell (2000) [Pubmed]
  24. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Burke, R., Nellen, D., Bellotto, M., Hafen, E., Senti, K.A., Dickson, B.J., Basler, K. Cell (1999) [Pubmed]
  25. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Sakai, J., Duncan, E.A., Rawson, R.B., Hua, X., Brown, M.S., Goldstein, J.L. Cell (1996) [Pubmed]
  26. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Nohturfft, A., Yabe, D., Goldstein, J.L., Brown, M.S., Espenshade, P.J. Cell (2000) [Pubmed]
  27. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. Tint, G.S., Irons, M., Elias, E.R., Batta, A.K., Frieden, R., Chen, T.S., Salen, G. N. Engl. J. Med. (1994) [Pubmed]
  28. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huët anomaly). Hoffmann, K., Dreger, C.K., Olins, A.L., Olins, D.E., Shultz, L.D., Lucke, B., Karl, H., Kaps, R., Müller, D., Vayá, A., Aznar, J., Ware, R.E., Sotelo Cruz, N., Lindner, T.H., Herrmann, H., Reis, A., Sperling, K. Nat. Genet. (2002) [Pubmed]
  29. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Kliewer, S.A., Moore, J.T., Wade, L., Staudinger, J.L., Watson, M.A., Jones, S.A., McKee, D.D., Oliver, B.B., Willson, T.M., Zetterström, R.H., Perlmann, T., Lehmann, J.M. Cell (1998) [Pubmed]
  30. Increased concentrations of cholestanol and apolipoprotein B in the cerebrospinal fluid of patients with cerebrotendinous xanthomatosis. Effect of chenodeoxycholic acid. Salen, G., Berginer, V., Shore, V., Horak, I., Horak, E., Tint, G.S., Shefer, S. N. Engl. J. Med. (1987) [Pubmed]
  31. Cholesterol levels inversely reflect the thermal sensitivity of mammalian cells in culture. Cress, A.E., Gerner, E.W. Nature (1980) [Pubmed]
  32. Sterol-resistant transcription in CHO cells caused by gene rearrangement that truncates SREBP-2. Yang, J., Sato, R., Goldstein, J.L., Brown, M.S. Genes Dev. (1994) [Pubmed]
  33. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J., Barton, M.K. Nature (2001) [Pubmed]
  34. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Berge, K.E., Tian, H., Graf, G.A., Yu, L., Grishin, N.V., Schultz, J., Kwiterovich, P., Shan, B., Barnes, R., Hobbs, H.H. Science (2000) [Pubmed]
  35. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Carstea, E.D., Morris, J.A., Coleman, K.G., Loftus, S.K., Zhang, D., Cummings, C., Gu, J., Rosenfeld, M.A., Pavan, W.J., Krizman, D.B., Nagle, J., Polymeropoulos, M.H., Sturley, S.L., Ioannou, Y.A., Higgins, M.E., Comly, M., Cooney, A., Brown, A., Kaneski, C.R., Blanchette-Mackie, E.J., Dwyer, N.K., Neufeld, E.B., Chang, T.Y., Liscum, L., Strauss, J.F., Ohno, K., Zeigler, M., Carmi, R., Sokol, J., Markie, D., O'Neill, R.R., van Diggelen, O.P., Elleder, M., Patterson, M.C., Brady, R.O., Vanier, M.T., Pentchev, P.G., Tagle, D.A. Science (1997) [Pubmed]
  36. Sterol esterification in yeast: a two-gene process. Yang, H., Bard, M., Bruner, D.A., Gleeson, A., Deckelbaum, R.J., Aljinovic, G., Pohl, T.M., Rothstein, R., Sturley, S.L. Science (1996) [Pubmed]
  37. High density lipoproteins, but not other lipoproteins, provide a vehicle for sterol transport to bile. Robins, S.J., Fasulo, J.M. J. Clin. Invest. (1997) [Pubmed]
  38. Radioimmunoassay of the binding protein for vitamin D and its metabolites in human serum: concentrations in normal subjects and patients with disorders of mineral homeostasis. Haddad, J.G., Walgate, J. J. Clin. Invest. (1976) [Pubmed]
  39. Identification of oxysterols in human bile and pigment gallstones. Haigh, W.G., Lee, S.P. Gastroenterology (2001) [Pubmed]
  40. ATP-binding cassette transporter A1 (ABCA1) affects total body sterol metabolism. Drobnik, W., Lindenthal, B., Lieser, B., Ritter, M., Christiansen Weber, T., Liebisch, G., Giesa, U., Igel, M., Borsukova, H., Büchler, C., Fung-Leung, W.P., Von Bergmann, K., Schmitz, G. Gastroenterology (2001) [Pubmed]
 
WikiGenes - Universities