The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Distinct regulation of glucose transport and GLUT1/GLUT3 transporters by glucose deprivation and IGF-I in chromaffin cells.

Effects of prolonged metabolic (glucose deprivation) and hormonal [insulin-like growth factor I (IGF-I)] challenge on regulation of glucose transporter (GLUT) expression, glucose transport rate and possible signaling pathways involved were studied in the neuroendocrine chromaffin cell. The results show that bovine chromaffin cells express both GLUT1 and GLUT3. Glucose deprivation and IGF-I activation led to an elevation of GLUT1 and GLUT3 mRNA, the strongest effect being that of IGF-I on GLUT3 mRNA. Both types of stimulus increased the GLUT1 protein content in a cycloheximide (CHX)-sensitive manner, and the glucose transport rate was elevated by 3- to 4-fold after 48 h under both experimental conditions. IGF-I-induced glucose uptake was totally suppressed by CHX. In contrast, only approximately 50% of transport activation in glucose-deprived cells was sensitive to the protein synthesis inhibitor. Specific inhibitors of mTOR/FRAP and p38 MAPK each partially blocked IGF-I-stimulated glucose transport, but had no effect on transport rate in glucose-deprived cells. The results are consistent with IGF-I-activated transport being completely dependent on new GLUT protein synthesis while the enhanced transport in glucose-deprived cells was partially achieved independent of new synthesis of proteins, suggesting a mechanism relying on preexisting transporters.[1]


WikiGenes - Universities