The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Chromaffin Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Chromaffin Cells


High impact information on Chromaffin Cells

  • To address this question, we examined neuroexocytosis from chromaffin cells of Snap25 null mice rescued by the two splice variants SNAP-25a and SNAP-25b and the ubiquitously expressed homolog SNAP-23 [6].
  • Thus, alternative graft sources have been explored including polymer-encapsulated cells and nonneural cells (that is, adrenal chromaffin cells) or genetically modified cells that secrete dopamine and/or trophic factors [7].
  • Our results indicate that chromaffin cells possess two calcium stores with distinct Ca2+-ATPases and that the organelle with the 100K Ca2+-ATPase is not the Ins(1,4,5)P3-sensitive store [8].
  • We show here that both calpactin and calpactin heavy chain (p36) reconstitute secretion in permeabilized chromaffin cells in which secretion has been reduced as a result of leakage of cellular components [9].
  • Synapsin or protein 4.1 in chromaffin cells [10].

Chemical compound and disease context of Chromaffin Cells


Biological context of Chromaffin Cells


Anatomical context of Chromaffin Cells


Associations of Chromaffin Cells with chemical compounds


Gene context of Chromaffin Cells


Analytical, diagnostic and therapeutic context of Chromaffin Cells


  1. Expression and precursor processing of neuropeptide Y in human pheochromocytoma and neuroblastoma tumors. O'Hare, M.M., Schwartz, T.W. Cancer Res. (1989) [Pubmed]
  2. Specific antibodies against the Zn(2+)-binding domain of clostridial neurotoxins restore exocytosis in chromaffin cells treated with tetanus or botulinum A neurotoxin. Bartels, F., Bergel, H., Bigalke, H., Frevert, J., Halpern, J., Middlebrook, J. J. Biol. Chem. (1994) [Pubmed]
  3. Pertussis toxin enhances proenkephalin synthesis in bovine chromaffin cells. Wilson, S.P. J. Neurochem. (1993) [Pubmed]
  4. Amyloid beta peptides mediate physiological remodelling of the acute O2 sensitivity of adrenomedullary chromaffin cells following chronic hypoxia. Brown, S.T., Johnson, R.P., Senaratne, R., Fearon, I.M. Cardiovasc. Res. (2004) [Pubmed]
  5. Mechanisms of toxicity and cellular resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium in adrenomedullary chromaffin cell cultures. Reinhard, J.F., Carmichael, S.W., Daniels, A.J. J. Neurochem. (1990) [Pubmed]
  6. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Sørensen, J.B., Nagy, G., Varoqueaux, F., Nehring, R.B., Brose, N., Wilson, M.C., Neher, E. Cell (2003) [Pubmed]
  7. Testis-derived Sertoli cells have a trophic effect on dopamine neurons and alleviate hemiparkinsonism in rats. Sanberg, P.R., Borlongan, C.V., Othberg, A.I., Saporta, S., Freeman, T.B., Cameron, D.F. Nat. Med. (1997) [Pubmed]
  8. Distribution of two distinct Ca2+-ATPase-like proteins and their relationships to the agonist-sensitive calcium store in adrenal chromaffin cells. Burgoyne, R.D., Cheek, T.R., Morgan, A., O'Sullivan, A.J., Moreton, R.B., Berridge, M.J., Mata, A.M., Colyer, J., Lee, A.G., East, J.M. Nature (1989) [Pubmed]
  9. A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells. Ali, S.M., Geisow, M.J., Burgoyne, R.D. Nature (1989) [Pubmed]
  10. Synapsin or protein 4.1 in chromaffin cells. Burgoyne, R.D., Baines, A.J. Nature (1987) [Pubmed]
  11. Restoration of exocytosis occurs after inactivation of intracellular tetanus toxin. Bartels, F., Bigalke, H. Infect. Immun. (1992) [Pubmed]
  12. Differential effects of hypoxia on ligand binding properties of nicotinic and muscarinic acetylcholine receptors on cultured bovine adrenal chromaffin cells. Lee, K., Ito, A., Koshimura, K., Ohue, T., Takagi, Y., Miwa, S. J. Neurochem. (1995) [Pubmed]
  13. Effects of hypoxia on the catecholamine release, Ca2+ uptake, and cytosolic free Ca2+ concentration in cultured bovine adrenal chromaffin cells. Lee, K., Miwa, S., Koshimura, K., Hasegawa, H., Hamahata, K., Fujiwara, M. J. Neurochem. (1990) [Pubmed]
  14. Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Eberhard, D.A., Cooper, C.L., Low, M.G., Holz, R.W. Biochem. J. (1990) [Pubmed]
  15. Chromaffin cell death induced by 6-hydroxydopamine is independent of mitochondrial swelling and caspase activation. Galindo, M.F., Jordán, J., González-García, C., Ceña, V. J. Neurochem. (2003) [Pubmed]
  16. Control of fusion pore dynamics during exocytosis by Munc18. Fisher, R.J., Pevsner, J., Burgoyne, R.D. Science (2001) [Pubmed]
  17. GRAB: a physiologic guanine nucleotide exchange factor for Rab3A, which interacts with inositol hexakisphosphate kinase. Luo, H.R., Saiardi, A., Nagata, E., Ye, K., Yu, H., Jung, T.S., Luo, X., Jain, S., Sawa, A., Snyder, S.H. Neuron (2001) [Pubmed]
  18. Proenkephalin A gene expression in bovine adrenal chromaffin cells is regulated by changes in electrical activity. Kley, N., Loeffler, J.P., Pittius, C.W., Höllt, V. EMBO J. (1986) [Pubmed]
  19. Metabolic stability and antigenic modulation of nicotinic acetylcholine receptors on bovine adrenal chromaffin cells. Higgins, L.S., Berg, D.K. J. Cell Biol. (1988) [Pubmed]
  20. Recovery from desensitization of neuronal nicotinic acetylcholine receptors of rat chromaffin cells is modulated by intracellular calcium through distinct second messengers. Khiroug, L., Sokolova, E., Giniatullin, R., Afzalov, R., Nistri, A. J. Neurosci. (1998) [Pubmed]
  21. Isolated chromaffin cells from adrenal medulla contain primarily monoamine oxidase B. Youdim, M.B., Banerjee, D.K., Pollard, H.B. Science (1984) [Pubmed]
  22. Glucocorticoid activation of chromogranin A gene expression. Identification and characterization of a novel glucocorticoid response element. Rozansky, D.J., Wu, H., Tang, K., Parmer, R.J., O'Connor, D.T. J. Clin. Invest. (1994) [Pubmed]
  23. Acidic fibroblast growth factor stimulates adrenal chromaffin cells to proliferate and to extend neurites, but is not a long-term survival factor. Claude, P., Parada, I.M., Gordon, K.A., D'Amore, P.A., Wagner, J.A. Neuron (1988) [Pubmed]
  24. Selective induction of tyrosine hydroxylase by cell-cell contact in bovine adrenal chromaffin cells is mimicked by plasma membranes. Saadat, S., Thoenen, H. J. Cell Biol. (1986) [Pubmed]
  25. Cortical filamentous actin disassembly and scinderin redistribution during chromaffin cell stimulation precede exocytosis, a phenomenon not exhibited by gelsolin. Vitale, M.L., Rodríguez Del Castillo, A., Tchakarov, L., Trifaró, J.M. J. Cell Biol. (1991) [Pubmed]
  26. Co-release of enkephalin and catecholamines from cultured adrenal chromaffin cells. Livett, B.G., Dean, D.M., Whelan, L.G., Udenfriend, S., Rossier, J. Nature (1981) [Pubmed]
  27. Activation of facilitation calcium channels in chromaffin cells by D1 dopamine receptors through a cAMP/protein kinase A-dependent mechanism. Artalejo, C.R., Ariano, M.A., Perlman, R.L., Fox, A.P. Nature (1990) [Pubmed]
  28. Substance P inhibits nicotinic activation of chromaffin cells. Livett, B.G., Kozousek, V., Mizobe, F., Dean, D.M. Nature (1979) [Pubmed]
  29. Activation of chromaffin cell Ca2+ channels by novel dihydropyridine. Glossmann, H. Nature (1985) [Pubmed]
  30. Dihydropyridine BAY-K-8644 activates chromaffin cell calcium channels. García, A.G., Sala, F., Reig, J.A., Viniegra, S., Frías, J., Fontériz, R., Gandía, L. Nature (1984) [Pubmed]
  31. Deletion of tyrosine hydroxylase gene reveals functional interdependence of adrenocortical and chromaffin cell system in vivo. Bornstein, S.R., Tian, H., Haidan, A., Böttner, A., Hiroi, N., Eisenhofer, G., McCann, S.M., Chrousos, G.P., Roffler-Tarlov, S. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  32. Development of chromaffin cells depends on MASH1 function. Huber, K., Brühl, B., Guillemot, F., Olson, E.N., Ernsberger, U., Unsicker, K. Development (2002) [Pubmed]
  33. Reduced acetylcholinesterase (AChE) activity in adrenal medulla and loss of sympathetic preganglionic neurons in TrkA-deficient, but not TrkB-deficient, mice. Schober, A., Minichiello, L., Keller, M., Huber, K., Layer, P.G., Roig-López, J.L., García-Arrarás, J.E., Klein, R., Unsicker, K. J. Neurosci. (1997) [Pubmed]
  34. TrkB and neurotrophin-4 are important for development and maintenance of sympathetic preganglionic neurons innervating the adrenal medulla. Schober, A., Wolf, N., Huber, K., Hertel, R., Krieglstein, K., Minichiello, L., Kahane, N., Widenfalk, J., Kalcheim, C., Olson, L., Klein, R., Lewin, G.R., Unsicker, K. J. Neurosci. (1998) [Pubmed]
  35. gamma-Aminobutyric acid receptor channels in adrenal chromaffin cells: a patch-clamp study. Bormann, J., Clapham, D.E. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  36. Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Smalheiser, N.R., Costa, E., Guidotti, A., Impagnatiello, F., Auta, J., Lacor, P., Kriho, V., Pappas, G.D. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  37. Postmortem analysis of adrenal-medulla-to-caudate autograft in a patient with Parkinson's disease. Hurtig, H., Joyce, J., Sladek, J.R., Trojanowski, J.Q. Ann. Neurol. (1989) [Pubmed]
  38. A cysteine-rich domain defined by a novel exon in a slo variant in rat adrenal chromaffin cells and PC12 cells. Saito, M., Nelson, C., Salkoff, L., Lingle, C.J. J. Biol. Chem. (1997) [Pubmed]
WikiGenes - Universities