The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Implications for RNase L in prostate cancer biology.

Recently, the interferon ( IFN) antiviral pathways and prostate cancer genetics and have surprisingly converged on a single-strand specific, regulated endoribonuclease. Genetics studies from several laboratories in the U.S., Finland, and Israel, support the recent identification of the RNase L gene, RNASEL, as a strong candidate for the long sought after hereditary prostate cancer 1 ( HPC1) allele. Results from these studies suggest that mutations in RNASEL predispose men to an increased incidence of prostate cancer, which in some cases reflect more aggressive disease and/or decreased age of onset compared with non-RNASEL linked cases. RNase L is a uniquely regulated endoribonuclease that requires 5'-triphosphorylated, 2',5'-linked oligoadenylates (2-5A) for its activity. The presence of both germline mutations in RNASEL segregating with disease within HPC-affected families and loss of heterozygosity (LOH) in tumor tissues suggest a novel role for the regulated endoribonuclease in the pathogenesis of prostate cancer. The association of mutations in RNASEL with prostate cancer cases further suggests a relationship between innate immunity and tumor suppression. It is proposed here that RNase L functions in counteracting prostate cancer by virtue of its ability to degrade RNA, thus initiating a cellular stress response that leads to apoptosis. This monograph reviews the biochemistry and genetics of RNase L as it relates to the pathobiology of prostate cancer and considers implications for future screening and therapy of this disease.[1]

References

  1. Implications for RNase L in prostate cancer biology. Silverman, R.H. Biochemistry (2003) [Pubmed]
 
WikiGenes - Universities