The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Loss of Heterozygosity

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Loss of Heterozygosity

 

High impact information on Loss of Heterozygosity

 

Chemical compound and disease context of Loss of Heterozygosity

 

Biological context of Loss of Heterozygosity

 

Anatomical context of Loss of Heterozygosity

 

Associations of Loss of Heterozygosity with chemical compounds

  • Forty distantly separate tumors were microdissected, DNA samples were prepared from formalin-fixed, paraffin-embedded wholemount prostate tissue section, and the overall frequencies of loss of heterozygosity at the four loci were determined [25].
  • No LOH was observed for loci mapped to chromosome 10 in PTC [26].
  • We also noted a correlation between LOH on 1p and urinary excretion of metanephrine by these patients (P = 0.02) [27].
  • FINDINGS: In 228 (58%) patients informative for LOH at D18S61, this marker was significantly predictive: benefit from fluorouracil was significantly greater in patients retaining heterozygosity than in those with LOH (CSH p=0.02) [28].
  • Both loci exhibited the highest frequencies of LOH in this study and are each located within the Parkin genomic structure [29].
 

Gene context of Loss of Heterozygosity

  • Here, we determine the evolutionary relationships of non-random LOH, TP53 and CDKN2A mutations, CDKN2A CpG-island methylation and ploidy during neoplastic progression [30].
  • All tumours with MEN1 gene mutation showed LOH on 11q13, making the tumour cells hemi- or homozygous for the mutant allele [16].
  • In CNC families mapping to 17q, we detected loss of heterozygosity (LOH) in the vicinity of the gene (PRKAR1A) encoding protein kinase A regulatory subunit 1-alpha (RIalpha), including a polymorphic site within its 5' region [31].
  • Loss-of-heterozygosity analysis revealed that one KLF6 allele is deleted in 77% (17 of 22) of primary prostate tumors [32].
  • In tumors developing in these mice, biallelic deletion of Ink4a/Arf or LOH of the Smad4 locus is found suggesting that loci in addition to p53 are involved in antitumor activities [33].
 

Analytical, diagnostic and therapeutic context of Loss of Heterozygosity

References

  1. Clonality of parathyroid tumors in familial multiple endocrine neoplasia type 1. Friedman, E., Sakaguchi, K., Bale, A.E., Falchetti, A., Streeten, E., Zimering, M.B., Weinstein, L.S., McBride, W.O., Nakamura, Y., Brandi, M.L. N. Engl. J. Med. (1989) [Pubmed]
  2. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. De Souza, A.T., Hankins, G.R., Washington, M.K., Orton, T.C., Jirtle, R.L. Nat. Genet. (1995) [Pubmed]
  3. Mutations in SUFU predispose to medulloblastoma. Taylor, M.D., Liu, L., Raffel, C., Hui, C.C., Mainprize, T.G., Zhang, X., Agatep, R., Chiappa, S., Gao, L., Lowrance, A., Hao, A., Goldstein, A.M., Stavrou, T., Scherer, S.W., Dura, W.T., Wainwright, B., Squire, J.A., Rutka, J.T., Hogg, D. Nat. Genet. (2002) [Pubmed]
  4. A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity. Haigis, K.M., Dove, W.F. Nat. Genet. (2003) [Pubmed]
  5. BRCA1 mutations in primary breast and ovarian carcinomas. Futreal, P.A., Liu, Q., Shattuck-Eidens, D., Cochran, C., Harshman, K., Tavtigian, S., Bennett, L.M., Haugen-Strano, A., Swensen, J., Miki, Y. Science (1994) [Pubmed]
  6. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., Pandolfi, P.P. Cell (2005) [Pubmed]
  7. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Ruivenkamp, C.A., van Wezel, T., Zanon, C., Stassen, A.P., Vlcek, C., Csikós, T., Klous, A.M., Tripodis, N., Perrakis, A., Boerrigter, L., Groot, P.C., Lindeman, J., Mooi, W.J., Meijjer, G.A., Scholten, G., Dauwerse, H., Paces, V., van Zandwijk, N., van Ommen, G.J., Demant, P. Nat. Genet. (2002) [Pubmed]
  8. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Carpten, J., Nupponen, N., Isaacs, S., Sood, R., Robbins, C., Xu, J., Faruque, M., Moses, T., Ewing, C., Gillanders, E., Hu, P., Bujnovszky, P., Makalowska, I., Baffoe-Bonnie, A., Faith, D., Smith, J., Stephan, D., Wiley, K., Brownstein, M., Gildea, D., Kelly, B., Jenkins, R., Hostetter, G., Matikainen, M., Schleutker, J., Klinger, K., Connors, T., Xiang, Y., Wang, Z., De Marzo, A., Papadopoulos, N., Kallioniemi, O.P., Burk, R., Meyers, D., Grönberg, H., Meltzer, P., Silverman, R., Bailey-Wilson, J., Walsh, P., Isaacs, W., Trent, J. Nat. Genet. (2002) [Pubmed]
  9. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. Watanabe, T., Wu, T.T., Catalano, P.J., Ueki, T., Satriano, R., Haller, D.G., Benson, A.B., Hamilton, S.R. N. Engl. J. Med. (2001) [Pubmed]
  10. TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Kuramochi, M., Fukuhara, H., Nobukuni, T., Kanbe, T., Maruyama, T., Ghosh, H.P., Pletcher, M., Isomura, M., Onizuka, M., Kitamura, T., Sekiya, T., Reeves, R.H., Murakami, Y. Nat. Genet. (2001) [Pubmed]
  11. Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Ali, I.U., Lidereau, R., Theillet, C., Callahan, R. Science (1987) [Pubmed]
  12. Tight association of loss of merlin expression with loss of heterozygosity at chromosome 22q in sporadic meningiomas. Ueki, K., Wen-Bin, C., Narita, Y., Asai, A., Kirino, T. Cancer Res. (1999) [Pubmed]
  13. Influence of TP53 gene alterations and c-erbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Geisler, S., Lønning, P.E., Aas, T., Johnsen, H., Fluge, O., Haugen, D.F., Lillehaug, J.R., Akslen, L.A., Børresen-Dale, A.L. Cancer Res. (2001) [Pubmed]
  14. Aldosterone-secreting adrenal adenoma as part of multiple endocrine neoplasia type 1 (MEN1): loss of heterozygosity for polymorphic chromosome 11 deoxyribonucleic acid markers, including the MEN1 locus. Beckers, A., Abs, R., Willems, P.J., van der Auwera, B., Kovacs, K., Reznik, M., Stevenaert, A. J. Clin. Endocrinol. Metab. (1992) [Pubmed]
  15. Loss of heterozygosity frequency at the Trp53 locus in p53-deficient (+/-) mouse tumors is carcinogen-and tissue-dependent. French, J.E., Lacks, G.D., Trempus, C., Dunnick, J.K., Foley, J., Mahler, J., Tice, R.R., Tennant, R.W. Carcinogenesis (2001) [Pubmed]
  16. Somatic mutation of the MEN1 gene in parathyroid tumours. Heppner, C., Kester, M.B., Agarwal, S.K., Debelenko, L.V., Emmert-Buck, M.R., Guru, S.C., Manickam, P., Olufemi, S.E., Skarulis, M.C., Doppman, J.L., Alexander, R.H., Kim, Y.S., Saggar, S.K., Lubensky, I.A., Zhuang, Z., Liotta, L.A., Chandrasekharappa, S.C., Collins, F.S., Spiegel, A.M., Burns, A.L., Marx, S.J. Nat. Genet. (1997) [Pubmed]
  17. Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Hemminki, A., Peltomäki, P., Mecklin, J.P., Järvinen, H., Salovaara, R., Nyström-Lahti, M., de la Chapelle, A., Aaltonen, L.A. Nat. Genet. (1994) [Pubmed]
  18. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Dietrich, W.F., Lander, E.S., Smith, J.S., Moser, A.R., Gould, K.A., Luongo, C., Borenstein, N., Dove, W. Cell (1993) [Pubmed]
  19. The DCC gene product in cellular differentiation and colorectal tumorigenesis. Hedrick, L., Cho, K.R., Fearon, E.R., Wu, T.C., Kinzler, K.W., Vogelstein, B. Genes Dev. (1994) [Pubmed]
  20. Mouse tumor model for neurofibromatosis type 1. Vogel, K.S., Klesse, L.J., Velasco-Miguel, S., Meyers, K., Rushing, E.J., Parada, L.F. Science (1999) [Pubmed]
  21. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. Brasier, J.L., Henske, E.P. J. Clin. Invest. (1997) [Pubmed]
  22. Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele. Burmer, G.C., Rabinovitch, P.S., Haggitt, R.C., Crispin, D.A., Brentnall, T.A., Kolli, V.R., Stevens, A.C., Rubin, C.E. Gastroenterology (1992) [Pubmed]
  23. Evidence that lymphangiomyomatosis is caused by TSC2 mutations: chromosome 16p13 loss of heterozygosity in angiomyolipomas and lymph nodes from women with lymphangiomyomatosis. Smolarek, T.A., Wessner, L.L., McCormack, F.X., Mylet, J.C., Menon, A.G., Henske, E.P. Am. J. Hum. Genet. (1998) [Pubmed]
  24. Mitotic recombination produces the majority of recessive fibroblast variants in heterozygous mice. Shao, C., Deng, L., Henegariu, O., Liang, L., Raikwar, N., Sahota, A., Stambrook, P.J., Tischfield, J.A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  25. Evidence of independent origin of multiple tumors from patients with prostate cancer. Cheng, L., Song, S.Y., Pretlow, T.G., Abdul-Karim, F.W., Kung, H.J., Dawson, D.V., Park, W.S., Moon, Y.W., Tsai, M.L., Linehan, W.M., Emmert-Buck, M.R., Liotta, L.A., Zhuang, Z. J. Natl. Cancer Inst. (1998) [Pubmed]
  26. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. Herrmann, M.A., Hay, I.D., Bartelt, D.H., Ritland, S.R., Dahl, R.J., Grant, C.S., Jenkins, R.B. J. Clin. Invest. (1991) [Pubmed]
  27. Loss of heterozygosity suggests multiple genetic alterations in pheochromocytomas and medullary thyroid carcinomas. Khosla, S., Patel, V.M., Hay, I.D., Schaid, D.J., Grant, C.S., van Heerden, J.A., Thibodeau, S.N. J. Clin. Invest. (1991) [Pubmed]
  28. DNA markers predicting benefit from adjuvant fluorouracil in patients with colon cancer: a molecular study. Barratt, P.L., Seymour, M.T., Stenning, S.P., Georgiades, I., Walker, C., Birbeck, K., Quirke, P. Lancet (2002) [Pubmed]
  29. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Cesari, R., Martin, E.S., Calin, G.A., Pentimalli, F., Bichi, R., McAdams, H., Trapasso, F., Drusco, A., Shimizu, M., Masciullo, V., D'Andrilli, G., Scambia, G., Picchio, M.C., Alder, H., Godwin, A.K., Croce, C.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  30. Evolution of neoplastic cell lineages in Barrett oesophagus. Barrett, M.T., Sanchez, C.A., Prevo, L.J., Wong, D.J., Galipeau, P.C., Paulson, T.G., Rabinovitch, P.S., Reid, B.J. Nat. Genet. (1999) [Pubmed]
  31. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Kirschner, L.S., Carney, J.A., Pack, S.D., Taymans, S.E., Giatzakis, C., Cho, Y.S., Cho-Chung, Y.S., Stratakis, C.A. Nat. Genet. (2000) [Pubmed]
  32. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Narla, G., Heath, K.E., Reeves, H.L., Li, D., Giono, L.E., Kimmelman, A.C., Glucksman, M.J., Narla, J., Eng, F.J., Chan, A.M., Ferrari, A.C., Martignetti, J.A., Friedman, S.L. Science (2001) [Pubmed]
  33. A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Wagner, M., Greten, F.R., Weber, C.K., Koschnick, S., Mattfeldt, T., Deppert, W., Kern, H., Adler, G., Schmid, R.M. Genes Dev. (2001) [Pubmed]
  34. A juvenile polyposis tumor suppressor locus at 10q22 is deleted from nonepithelial cells in the lamina propria. Jacoby, R.F., Schlack, S., Cole, C.E., Skarbek, M., Harris, C., Meisner, L.F. Gastroenterology (1997) [Pubmed]
  35. Overlapping loss of heterozygosity by mitotic recombination on mouse chromosome 7F1-ter in skin carcinogenesis. Bianchi, A.B., Navone, N.M., Aldaz, C.M., Conti, C.J. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  36. Carcinogen-induced loss of heterozygosity at the Aprt locus in somatic cells of the mouse. Wijnhoven, S.W., Van Sloun, P.P., Kool, H.J., Weeda, G., Slater, R., Lohman, P.H., van Zeeland, A.A., Vrieling, H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  37. Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Gutmann, D.H., Donahoe, J., Perry, A., Lemke, N., Gorse, K., Kittiniyom, K., Rempel, S.A., Gutierrez, J.A., Newsham, I.F. Hum. Mol. Genet. (2000) [Pubmed]
  38. Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: epidemiology and molecular analysis. Shannon, K.M., Watterson, J., Johnson, P., O'Connell, P., Lange, B., Shah, N., Steinherz, P., Kan, Y.W., Priest, J.R. Blood (1992) [Pubmed]
 
WikiGenes - Universities