The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential requirement of G alpha12, G alpha13, G alphaq, and G beta gamma for endothelin-1- induced c-Jun NH2-terminal kinase and extracellular signal-regulated kinase activation.

In the present study, we examined the roles of G(12), G(13), G(q), and G(i) in endothelin-1-induced hypertrophic responses. Endothelin-1 stimulation activated extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) in cultured rat neonatal myocytes. The activation of JNK, but not ERK, was inhibited by the expression of carboxyl terminal regions of G alpha(12) and G alpha(13). JNK activation was also inhibited by expression of the G alpha(12)/G alpha(13)-specific inhibitor regulator of G protein signaling (RGS) domain of p115RhoGEF and the G alpha(q)-specific inhibitor RGS domain of the G protein-coupled receptor kinase 2 (GRK2-RGS). JNK activation was not, however, inhibited by expression of the carboxyl terminal region of G protein-coupled receptor kinase 2 (GRK2-ct), which is a G beta gamma-sequestering polypeptide. Additionally, JNK activation but not ERK activation was inhibited by the expression of C3 exoenzyme that inactivates small GTPase Rho. These results suggest that JNK activation by G alpha(12), G alpha(13), and G alpha(q) is involved in Rho. On the other hand, ERK activation was inhibited by pertussis toxin treatment, the receptor-G(i) uncoupler, and GRK2-ct. Thus, ERK was activated by G alpha(i)- and G beta gamma-dependent pathways. These results clearly demonstrate that differential pathways activate JNK and ERK.[1]

References

  1. Differential requirement of G alpha12, G alpha13, G alphaq, and G beta gamma for endothelin-1-induced c-Jun NH2-terminal kinase and extracellular signal-regulated kinase activation. Arai, K., Maruyama, Y., Nishida, M., Tanabe, S., Takagahara, S., Kozasa, T., Mori, Y., Nagao, T., Kurose, H. Mol. Pharmacol. (2003) [Pubmed]
 
WikiGenes - Universities