The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

N-linked oligosaccharide processing, but not association with calnexin/calreticulin is highly correlated with endoplasmic reticulum-associated degradation of antithrombin Glu313-deleted mutant.

Previously we showed that two antithrombin mutants were degraded through an endoplasmic reticulum (ER)-associated degradation (ERAD) pathway [F. Tokunaga et al., FEBS Lett. 412 (1997) 65]. Here, we examined the combined effects of inhibitors of glycosidases, protein synthesis, proteasome, and tyrosine phosphatase on ERAD of a Glu313-deleted (DeltaGlu) mutant of antithrombin. We found that kifunensine, an ER mannosidase I inhibitor, suppressed ERAD, indicating that specific mannose trimming plays a critical role. Cycloheximide and puromycin, inhibitors of protein synthesis, also suppressed ERAD, the effects being cancelled by pretreatment with castanospermine. In contrast, kifunensine suppressed ERAD even in castanospermine-treated cells, suggesting that suppression of ERAD does not always require the binding of lectin-like ER chaperones-like calnexin and/or calreticulin. These results indicate that, besides proteasome inhibitors, inhibitors of ER mannosidase I and protein synthesis suppress ERAD of the antithrombin deltaGlu mutant at different stages, and processing of N-linked oligosaccharides highly correlated with the efficiency of ERAD.[1]


WikiGenes - Universities