The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AGN-PC-009IH3     1,2,3,5,6,7,8,8a- octahydroindolizine-1,6,7...

Synonyms: ACMC-1BSMC, AG-K-85044, SureCN2267745, ACMC-20dgn5, AC1Q7APY, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of castanospermine

  • Castanospermine and other plant alkaloid inhibitors of glucosidase activity block the growth of HIV [1].
  • Aggregation or adhesion between L1- and N-CAM-positive neuroblastoma N2A cells was reduced when the synthesis of complex and/or hybrid glycans was modified by castanospermine [2].
  • We have analyzed several biological responses of embryonic dorsal root ganglion neurons, with or without added purified populations of Schwann cells, in the presence of castanospermine [3].
  • Furthermore, in those animals receiving castanospermine at 1.0 mg or higher per g of body weight for 3 days, there was a marked decrease in the amount of glycogen in the cytoplasm, while a large number of lysosomes were observed that were full of dense, granular material [4].
  • Inhibition of experimental metastasis by castanospermine in mice: blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors [5].

High impact information on castanospermine

  • We therefore investigated the effects of castanospermine, 1-deoxynojirimycin (dNM) and 1-deoxymannojirimycin (dMM), three trimming glycosidase inhibitors which perturb N-linked glycan structure, on induction of the formation of syncytium between HIV-infected and CD4-expressing cells [6].
  • Castanospermine, an inhibitor of ER glucosidases, blocked the binding of proteins to calnexin and inhibited G protein folding [7].
  • Structural distortion at the active site was probed by comparing the interaction of the mutant enzymes with active site-directed inhibitors (castanospermine, conduritol B epoxide and deoxynojirimycin) [8].
  • An inhibitor of glucose trimming, castanospermine (CST), abolished binding to Cnx/Crt but also unexpectedly accelerated receptor homodimerization resulting in misfolded oligomeric proreceptors whose processing was delayed and cell surface expression was also decreased by approximately 30% [9].
  • Using castanospermine (an alpha-glucosidase inhibitor) and yeast strains defective in glucosidase I, glucosidase II and BiP/Kar2p, it was demonstrated that cell wall synthesis depends on the two glucosidases and BiP/Kar2p [10].

Chemical compound and disease context of castanospermine


Biological context of castanospermine


Anatomical context of castanospermine


Associations of castanospermine with other chemical compounds

  • Castanospermine (Cas), an inhibitor of alpha-glucosidase I, blocks "trimming" of the N-linked oligosaccharide Glc3Man9GlcNAc2, thus preventing normal glycoprotein maturation [21].
  • The specific enzyme activity of intracellular HL was decreased by 25-50% upon incubation with CCCP or castanospermine, and increased 2-fold with monensin and colchicin [22].
  • Chromatography of a Triton extract of rat liver Golgi membranes on a column of this gel in the presence of castanospermine to prevent binding of alpha-glucosidases permitted a rapid purification of the endomannosidase (70,000-fold over the homogenate) with a 12% yield [23].
  • Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), castanospermine, monensin, and colchicin all inhibited secretion of HL without affecting its specific enzyme activity [22].
  • Inhibition of glucose trimming with castanospermine reduces calnexin association and promotes proteasome degradation of the alpha-subunit of the nicotinic acetylcholine receptor [24].

Gene context of castanospermine


Analytical, diagnostic and therapeutic context of castanospermine


  1. Castanospermine and other plant alkaloid inhibitors of glucosidase activity block the growth of HIV. Tyms, A.S., Berrie, E.M., Ryder, T.A., Nash, R.J., Hegarty, M.P., Taylor, D.L., Mobberley, M.A., Davis, J.M., Bell, E.A., Jeffries, D.J. Lancet (1987) [Pubmed]
  2. Functional cooperation between the neural adhesion molecules L1 and N-CAM is carbohydrate dependent. Kadmon, G., Kowitz, A., Altevogt, P., Schachner, M. J. Cell Biol. (1990) [Pubmed]
  3. Specific asparagine-linked oligosaccharides are not required for certain neuron-neuron and neuron-Schwann cell interactions. Ratner, N., Elbein, A., Bunge, M.B., Porter, S., Bunge, R.P., Glaser, L. J. Cell Biol. (1986) [Pubmed]
  4. Castanospermine inhibits alpha-glucosidase activities and alters glycogen distribution in animals. Saul, R., Ghidoni, J.J., Molyneux, R.J., Elbein, A.D. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  5. Inhibition of experimental metastasis by castanospermine in mice: blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Humphries, M.J., Matsumoto, K., White, S.L., Olden, K. Cancer Res. (1986) [Pubmed]
  6. Interference with HIV-induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase. Gruters, R.A., Neefjes, J.J., Tersmette, M., de Goede, R.E., Tulp, A., Huisman, H.G., Miedema, F., Ploegh, H.L. Nature (1987) [Pubmed]
  7. Folding of VSV G protein: sequential interaction with BiP and calnexin. Hammond, C., Helenius, A. Science (1994) [Pubmed]
  8. Identification and expression of acid beta-glucosidase mutations causing severe type 1 and neurologic type 2 Gaucher disease in non-Jewish patients. Grace, M.E., Desnick, R.J., Pastores, G.M. J. Clin. Invest. (1997) [Pubmed]
  9. Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. Bass, J., Chiu, G., Argon, Y., Steiner, D.F. J. Cell Biol. (1998) [Pubmed]
  10. Cell wall 1,6-beta-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. Simons, J.F., Ebersold, M., Helenius, A. EMBO J. (1998) [Pubmed]
  11. Inhibition of experimental metastasis by an alpha-glucosidase inhibitor, 1,6-epi-cyclophellitol. Atsumi, S., Nosaka, C., Ochi, Y., Iinuma, H., Umezawa, K. Cancer Res. (1993) [Pubmed]
  12. The effects of processing inhibitors of N-linked oligosaccharides on the intracellular migration of glycoprotein E2 of mouse hepatitis virus and the maturation of coronavirus particles. Repp, R., Tamura, T., Boschek, C.B., Wege, H., Schwarz, R.T., Niemann, H. J. Biol. Chem. (1985) [Pubmed]
  13. Post-translational addition of chondroitin sulfate glycosaminoglycans. Role of N-linked oligosaccharide addition, trimming, and processing. Spiro, R.C., Casteel, H.E., Laufer, D.M., Reisfeld, R.A., Harper, J.R. J. Biol. Chem. (1989) [Pubmed]
  14. Inhibition of alpha-glucosidase I of the glycoprotein-processing enzymes by 6-O-butanoyl castanospermine (MDL 28,574) and its consequences in human immunodeficiency virus-infected T cells. Taylor, D.L., Kang, M.S., Brennan, T.M., Bridges, C.G., Sunkara, P.S., Tyms, A.S. Antimicrob. Agents Chemother. (1994) [Pubmed]
  15. Synergistic inhibition of human immunodeficiency virus type 1 and type 2 replication in vitro by castanospermine and 3'-azido-3'-deoxythymidine. Johnson, V.A., Walker, B.D., Barlow, M.A., Paradis, T.J., Chou, T.C., Hirsch, M.S. Antimicrob. Agents Chemother. (1989) [Pubmed]
  16. Inhibition of human immunodeficiency virus syncytium formation and virus replication by castanospermine. Walker, B.D., Kowalski, M., Goh, W.C., Kozarsky, K., Krieger, M., Rosen, C., Rohrschneider, L., Haseltine, W.A., Sodroski, J. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  17. Transformation by the v-fms oncogene product: role of glycosylational processing and cell surface expression. Nichols, E.J., Manger, R., Hakomori, S., Herscovics, A., Rohrschneider, L.R. Mol. Cell. Biol. (1985) [Pubmed]
  18. Persistence of glucose residues on core oligosaccharides prevents association of TCR alpha and TCR beta proteins with calnexin and results specifically in accelerated degradation of nascent TCR alpha proteins within the endoplasmic reticulum. Kearse, K.P., Williams, D.B., Singer, A. EMBO J. (1994) [Pubmed]
  19. Promotion of transferrin folding by cyclic interactions with calnexin and calreticulin. Wada, I., Kai, M., Imai, S., Sakane, F., Kanoh, H. EMBO J. (1997) [Pubmed]
  20. The alpha-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Pili, R., Chang, J., Partis, R.A., Mueller, R.A., Chrest, F.J., Passaniti, A. Cancer Res. (1995) [Pubmed]
  21. Inhibition of oligosaccharide processing and membrane morphogenesis in retinal rod photoreceptor cells. Fliesler, S.J., Rayborn, M.E., Hollyfield, J.G. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  22. Intracellular activation of rat hepatic lipase requires transport to the Golgi compartment and is associated with a decrease in sedimentation velocity. Verhoeven, A.J., Neve, B.P., Jansen, H. J. Biol. Chem. (2000) [Pubmed]
  23. Ligand affinity chromatographic purification of rat liver Golgi endomannosidase. Hiraizumi, S., Spohr, U., Spiro, R.G. J. Biol. Chem. (1994) [Pubmed]
  24. Inhibition of glucose trimming with castanospermine reduces calnexin association and promotes proteasome degradation of the alpha-subunit of the nicotinic acetylcholine receptor. Keller, S.H., Lindstrom, J., Taylor, P. J. Biol. Chem. (1998) [Pubmed]
  25. Effect of inhibiting N-glycosylation or oligosaccharide processing on vasoactive intestinal peptide receptor binding activity and structure. el Battari, A., Forget, P., Fouchier, F., Pic, P. Biochem. J. (1991) [Pubmed]
  26. Association of the thyrotropin receptor with calnexin, calreticulin and BiP. Efects on the maturation of the receptor. Siffroi-Fernandez, S., Giraud, A., Lanet, J., Franc, J.L. Eur. J. Biochem. (2002) [Pubmed]
  27. Separate roles and different routing of calnexin and ERp57 in endoplasmic reticulum quality control revealed by interactions with asialoglycoprotein receptor chains. Frenkel, Z., Shenkman, M., Kondratyev, M., Lederkremer, G.Z. Mol. Biol. Cell (2004) [Pubmed]
  28. Role of calnexin, calreticulin, and endoplasmic reticulum mannosidase I in apolipoprotein(a) intracellular targeting. Wang, J., White, A.L. Biochemistry (2000) [Pubmed]
  29. Brefeldin A enables synthesis of active lipoprotein lipase in cld/cld and castanospermine-treated mouse brown adipocytes via translocation of Golgi components to endoplasmic reticulum. Park, J.W., Blanchette-Mackie, E.J., Scow, R.O. Biochem. J. (1996) [Pubmed]
  30. A dengue Fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs. Schul, W., Liu, W., Xu, H.Y., Flamand, M., Vasudevan, S.G. J. Infect. Dis. (2007) [Pubmed]
  31. The effect of castanospermine on the oligosaccharide structures of glycoproteins from lymphoma cell lines. Palamarczyk, G., Elbein, A.D. Biochem. J. (1985) [Pubmed]
  32. Castanospermine inhibits glucosidase I and glycoprotein secretion in human hepatoma cells. Sasak, V.W., Ordovas, J.M., Elbein, A.D., Berninger, R.W. Biochem. J. (1985) [Pubmed]
  33. Uptake and metabolism of BuCast: a glycoprotein processing inhibitor and a potential anti-HIV drug. Kang, M.S. Glycobiology (1996) [Pubmed]
WikiGenes - Universities