The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Role of PKC in autocrine regulation of rat ventricular K+ currents by angiotensin and endothelin.

Transient and sustained K(+) currents were measured in isolated rat ventricular myocytes obtained from control, steptozotocin-induced (Type 1) diabetic, and hypothyroid rats. Both currents, attenuated by the endocrine abnormalities, were significantly augmented by in vitro incubation (>6 h) with the angiotensin-converting enzyme inhibitor quinapril or the angiotensin II (ANG II) receptor blocker saralasin. Western blots indicated a parallel increase in Kv4.2 and Kv1.2, channel proteins that underlie the transient and (part of the) sustained currents. Under diabetic and hypothyroid conditions, both currents were also augmented by an endothelin receptor blocker (PD142893) or by an endothelin-converting enzyme inhibitor. Kv4.2 density was also enhanced by PD142893. Incubation (>5 h) with the PKC inhibitor bis-indolylmaleimide augmented both currents, whereas the PKC activator dioctanoyl-rac-glycerol (DiC8) prevented the augmentation of currents by quinapril. DiC8 also prevented the augmentation of Kv4.2 density by quinapril. Specific peptides that activate PKC translocation indicated that PKC-epsilon and not PKC-delta is involved in ANG II action on these currents. In control myocytes, quinapril and PD142893 augmented the sustained late current but had no effect on peak current. It is concluded that an autocrine release of angiotensin and endothelin in diabetic and hypothyroid conditions attenuates K(+) currents by suppressing the synthesis of some K(+) channel proteins, with the effects mediated at least partially by PKC-epsilon.[1]


  1. Role of PKC in autocrine regulation of rat ventricular K+ currents by angiotensin and endothelin. Shimoni, Y., Liu, X.F. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
WikiGenes - Universities