The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

LS-19551     2-[2-[[(2S)-2-[[(2S)-1-[(2S)- 2-[2-[[(2S)-2...

Synonyms: AC1MJ14Q, EINECS 215-804-9, 28255-EP2291076A1, 28255-EP2313417A1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Angiotensin

 

Psychiatry related information on Angiotensin

 

High impact information on Angiotensin

 

Chemical compound and disease context of Angiotensin

 

Biological context of Angiotensin

 

Anatomical context of Angiotensin

 

Associations of Angiotensin with other chemical compounds

 

Gene context of Angiotensin

  • AT1 receptors seem to mediate the major cardiovascular effects of angiotensin II [32].
  • Also, angiotensin II induced expression of KLF5, which in turn activated platelet-derived growth factor-A (PDGF-A) and transforming growth factor-beta (TGF-beta) expression [33].
  • Krüppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling [33].
  • Moreover, stimulation of the angiotensin II type 1A receptor activated JNK3 and triggered the colocalization of beta-arrestin 2 and active JNK3 to intracellular vesicles [34].
  • Using Agtr1a(-/-) mice, which lack AT(1A) receptors for angiotensin II, we have identified a novel function of the RAS to modulate the immune system [35].
 

Analytical, diagnostic and therapeutic context of Angiotensin

  • Using shrinking split-drop micropuncture combined with simultaneous capillary perfusion in anaesthetized rats we report that 20 nanomolar alpha-rANP (the main component of ANP in rat plasma) added to the peritubular fluid had no direct effect on proximal fluid uptake whereas picomolar angiotensin II had a marked stimulatory action as reported [36].
  • Circulating angiotensin II and adrenal receptors after nephrectomy [37].
  • Immunocytochemical tests show that they contain both immunoreactive renin and angiotensin; direct radioimmunoassays show that they are positive for renin, angiotensin I, and angiotensin II; enzymatic assays show that they contain angiotensinogen and converting enzyme as well [38].
  • Dose-related reductions in blood pressure, plasma renin activity, and plasma angiotensin II in parallel with increased plasma drug concentrations were observed after oral administration of A-72517 to conscious, salt-depleted dogs [39].
  • Thus, the angiotensin-converting enzyme may participate in modulating the proliferative response of the vascular wall after arterial injury, and inhibition of this enzyme may have therapeutic applications to prevent the proliferative lesions that occur after coronary angioplasty and vascular surgery [40].

References

  1. The Immunobiology of SARS (*). Chen, J., Subbarao, K. Annu. Rev. Immunol. (2007) [Pubmed]
  2. Linkage of the angiotensin gene to essential hypertension. Brown, M.J., Clayton, D. N. Engl. J. Med. (1994) [Pubmed]
  3. Treatment of chronic congestive heart failure with captopril, an oral inhibitor of angiotensin-converting enzyme. Davis, R., Ribner, H.S., Keung, E., Sonnenblick, E.H., LeJemtel, T.H. N. Engl. J. Med. (1979) [Pubmed]
  4. Effect of captopril on heavy proteinuria in azotemic diabetics. Taguma, Y., Kitamoto, Y., Futaki, G., Ueda, H., Monma, H., Ishizaki, M., Takahashi, H., Sekino, H., Sasaki, Y. N. Engl. J. Med. (1985) [Pubmed]
  5. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. Ohishi, M., Rakugi, H., Ogihara, T. N. Engl. J. Med. (1994) [Pubmed]
  6. Geographic variation in the treatment of acute myocardial infarction: the Cooperative Cardiovascular Project. O'Connor, G.T., Quinton, H.B., Traven, N.D., Ramunno, L.D., Dodds, T.A., Marciniak, T.A., Wennberg, J.E. JAMA (1999) [Pubmed]
  7. Actions by angiotensin II on esophageal contractility in humans. Casselbrant, A., Edebo, A., Wennerblom, J., Lönroth, H., Helander, H.F., Vieth, M., Lundell, L., Fändriks, L. Gastroenterology (2007) [Pubmed]
  8. Centrally infused atrial natriuretic polypeptide attenuates exaggerated salt appetite in spontaneously hypertensive rats. Itoh, H., Nakao, K., Katsuura, G., Morii, N., Shiono, S., Sakamoto, M., Sugawara, A., Yamada, T., Saito, Y., Matsushita, A. Circ. Res. (1986) [Pubmed]
  9. Bradykinin B2 receptor knockout mice are protected from thrombosis by increased nitric oxide and prostacyclin. Shariat-Madar, Z., Mahdi, F., Warnock, M., Homeister, J.W., Srikanth, S., Krijanovski, Y., Murphey, L.J., Jaffa, A.A., Schmaier, A.H. Blood (2006) [Pubmed]
  10. Alcohol consumption is controlled by angiotensin II. Maul, B., Siems, W.E., Hoehe, M.R., Grecksch, G., Bader, M., Walther, T. FASEB J. (2001) [Pubmed]
  11. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Spät, A., Hunyady, L. Physiol. Rev. (2004) [Pubmed]
  12. Neuroendocrine control of body fluid metabolism. Antunes-Rodrigues, J., de Castro, M., Elias, L.L., Valença, M.M., McCann, S.M. Physiol. Rev. (2004) [Pubmed]
  13. Angiotensin, thirst, and sodium appetite. Fitzsimons, J.T. Physiol. Rev. (1998) [Pubmed]
  14. Glomerular mesangial cells: electrophysiology and regulation of contraction. Stockand, J.D., Sansom, S.C. Physiol. Rev. (1998) [Pubmed]
  15. Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects. Gainer, J.V., Morrow, J.D., Loveland, A., King, D.J., Brown, N.J. N. Engl. J. Med. (1998) [Pubmed]
  16. Bradykinin and inhibition of angiotensin-converting enzyme in hypertension. Azizi, M. N. Engl. J. Med. (1999) [Pubmed]
  17. Pheochromocytoma crisis induced by saralasin. Relation of angiotensin analogue to catecholamine release. Dunn, F.G., De Carvalho, J.G., Kem, D.C., Higgins, J.R., Frohlich, E.D. N. Engl. J. Med. (1976) [Pubmed]
  18. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Wettschureck, N., Rütten, H., Zywietz, A., Gehring, D., Wilkie, T.M., Chen, J., Chien, K.R., Offermanns, S. Nat. Med. (2001) [Pubmed]
  19. Surreptitious habitual vomiting simulating Bartter's syndrome. Ramos, E., Hall-Craggs, M., Demers, L.M. JAMA (1980) [Pubmed]
  20. Increased glomerular filtration rate after converting-enzyme inhibition in essential hypertension. Hollenberg, N.K., Swartz, S.L., Passan, D.R., Williams, G.H. N. Engl. J. Med. (1979) [Pubmed]
  21. Accentuated vascular and endocrine response to SQ 20881 in hypertension. Williams, G.H., Hollenberg, N.K. N. Engl. J. Med. (1977) [Pubmed]
  22. Renin release, saralasin and the vasodilator-beta-blocker drug interaction in man. Pettinger, W.A., Mitchell, H.C. N. Engl. J. Med. (1975) [Pubmed]
  23. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Sasaki, K., Yamano, Y., Bardhan, S., Iwai, N., Murray, J.J., Hasegawa, M., Matsuda, Y., Inagami, T. Nature (1991) [Pubmed]
  24. Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats. Saavedra, J.M., Correa, F.M., Plunkett, L.M., Israel, A., Kurihara, M., Shigematsu, K. Nature (1986) [Pubmed]
  25. Inhibition of angiotensin-converting enzyme for diagnosis of renal-artery stenosis. Re, R., Novelline, R., Escourrou, M.T., Athanasoulis, C., Burton, J., Haber, E. N. Engl. J. Med. (1978) [Pubmed]
  26. Angiotensin-converting enzyme in substantia nigra of schizophrenics. Owen, F., Lofthouse, R., Crow, T.J. N. Engl. J. Med. (1980) [Pubmed]
  27. Transformation of cultured human vascular endothelium by SV40 DNA. Gimbrone, M.A., Fareed, G.C. Cell (1976) [Pubmed]
  28. Quality of life and antihypertensive therapy in men. A comparison of captopril with enalapril. The Quality-of-Life Hypertension Study Group. Testa, M.A., Anderson, R.B., Nackley, J.F., Hollenberg, N.K. N. Engl. J. Med. (1993) [Pubmed]
  29. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. Cohn, J.N., Tognoni, G. N. Engl. J. Med. (2001) [Pubmed]
  30. Regulation by angiotensin II of its receptors in resistance blood vessels. Gunther, S., Gimbrone, M.A., Alexander, R.W. Nature (1980) [Pubmed]
  31. Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Brancaccio, M., Fratta, L., Notte, A., Hirsch, E., Poulet, R., Guazzone, S., De Acetis, M., Vecchione, C., Marino, G., Altruda, F., Silengo, L., Tarone, G., Lembo, G. Nat. Med. (2003) [Pubmed]
  32. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Murphy, T.J., Alexander, R.W., Griendling, K.K., Runge, M.S., Bernstein, K.E. Nature (1991) [Pubmed]
  33. Krüppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Shindo, T., Manabe, I., Fukushima, Y., Tobe, K., Aizawa, K., Miyamoto, S., Kawai-Kowase, K., Moriyama, N., Imai, Y., Kawakami, H., Nishimatsu, H., Ishikawa, T., Suzuki, T., Morita, H., Maemura, K., Sata, M., Hirata, Y., Komukai, M., Kagechika, H., Kadowaki, T., Kurabayashi, M., Nagai, R. Nat. Med. (2002) [Pubmed]
  34. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. McDonald, P.H., Chow, C.W., Miller, W.E., Laporte, S.A., Field, M.E., Lin, F.T., Davis, R.J., Lefkowitz, R.J. Science (2000) [Pubmed]
  35. Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. Nataraj, C., Oliverio, M.I., Mannon, R.B., Mannon, P.J., Audoly, L.P., Amuchastegui, C.S., Ruiz, P., Smithies, O., Coffman, T.M. J. Clin. Invest. (1999) [Pubmed]
  36. Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Harris, P.J., Thomas, D., Morgan, T.O. Nature (1987) [Pubmed]
  37. Circulating angiotensin II and adrenal receptors after nephrectomy. Aguilera, G., Schirar, A., Baukal, A., Catt, K.J. Nature (1981) [Pubmed]
  38. Renin and angiotensin: the complete system within the neuroblastoma x glioma cell. Fishman, M.C., Zimmerman, E.A., Slater, E.E. Science (1981) [Pubmed]
  39. Discovery of a peptide-based renin inhibitor with oral bioavailability and efficacy. Kleinert, H.D., Rosenberg, S.H., Baker, W.R., Stein, H.H., Klinghofer, V., Barlow, J., Spina, K., Polakowski, J., Kovar, P., Cohen, J. Science (1992) [Pubmed]
  40. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Powell, J.S., Clozel, J.P., Müller, R.K., Kuhn, H., Hefti, F., Hosang, M., Baumgartner, H.R. Science (1989) [Pubmed]
 
WikiGenes - Universities