The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The curious genomic path from leaky red cell to nephrotic kidney.

The human red cell has proved to be an invaluable model cell for the study of many aspects of membrane structure and function. It has a series of transport pathways which mediate the movements of the univalent cations Na and K, which are either identical or similar to systems in other human tissues, including the human kidney. The balance between the energy-consuming NaK pump and a 'passive leak' component maintains a net deficit of cations within the cell, which defends the cell volume against osmotic swelling. There exist a series of dominantly inherited human red cell conditions, gathered under the generic title 'hereditary stomatocytoses', in which the so-called 'passive leak' to Na and K is pathologically increased. In the more severe variants this compromises the integrity of the cell and the patients suffer haemolytic anaemia. Some less severe variants present with pseudohyperkalaemia caused by loss of K from red cells on storage of blood at room temperature. The most severe variants show a deficiency in a widely distributed 'raft' protein known as stomatin. The stomatin protein is homologous to the 'podocin' protein, the gene for which is mutated in a recessively inherited form of nephrotic syndrome. Among other possible functions, both proteins could be involved in the trafficking of membrane proteins to and from the plasma membrane.[1]

References

  1. The curious genomic path from leaky red cell to nephrotic kidney. Stewart, G.W., Fricke, B. Nephron. Physiology [electronic resource]. (2003) [Pubmed]
 
WikiGenes - Universities