The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

pH-responsive stabilization of glutamate dehydrogenase mRNA in LLC-PK1-F+ cells.

During chronic metabolic acidosis, the adaptive increase in rat renal ammoniagenesis is sustained, in part, by increased expression of mitochondrial glutaminase ( GA) and glutamate dehydrogenase (GDH) enzymes. The increase in GA activity results from the pH-responsive stabilization of GA mRNA. The 3'-untranslated region (3'-UTR) of GA mRNA contains a direct repeat of an eight-base AU-rich element (ARE) that binds zeta-crystallin/NADPH:quinone reductase (zeta-crystallin) with high affinity and functions as a pH-response element. RNA EMSAs established that zeta-crystallin also binds to the full-length 3'-UTR of GDH mRNA. This region contains four eight-base sequences that are 88% identical to one of the two GA AREs. Direct binding assays and competition studies indicate that the two individual eight-base AREs from GA mRNA and the four individual GDH sequences bind zeta-crystallin with different affinities. Insertion of the 3'-UTR of GDH cDNA into a beta-globin expression vector (pbetaG) produced a chimeric mRNA that was stabilized when LLC-PK1-F+ cells were transferred to acidic medium. A pH-responsive stabilization was also observed using a betaG construct that contained only the single GDH4 ARE and a destabilizing element from phosphoenolpyruvate carboxykinase mRNA. Therefore, during acidosis, the pH-responsive stabilization of GDH mRNA may be accomplished by the same mechanism that affects an increase in GA mRNA.[1]


  1. pH-responsive stabilization of glutamate dehydrogenase mRNA in LLC-PK1-F+ cells. Schroeder, J.M., Liu, W., Curthoys, N.P. Am. J. Physiol. Renal Physiol. (2003) [Pubmed]
WikiGenes - Universities