The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

BCR targets cyclin D2 via Btk and the p85alpha subunit of PI3-K to induce cell cycle progression in primary mouse B cells.

The p85alpha subunit of PI3-K and Btk are two crucial components of the B-cell receptor (BCR) signalling pathway. In the present study, we showed that primary splenic B cells from p85alpha null and xid (Btk-deficient) mice fail to induce cyclin D2 expression and enter early G1, but not S phase of the cell cycle in response to BCR engagement. Furthermore, these Btk or p85alpha null B cells displayed increased cell death compared with wild type following BCR engagement. These findings are further confirmed by studies showing that specific pharmacological inhibitors of Btk (LFM-A13), PI3-K (LY294002 and Wortmannin) and PLCgamma (U73122) also block cyclin D2 expression and S phase entry following BCR stimulation, as well as triggering apoptosis. Collectively, these data provide evidence for the concept that the B-cell signalosome (p85alpha, Btk, BLNK and PLCgamma) is involved in regulating cyclin D2 expression in response to BCR engagement. PKC and intracellular calcium are two major downstream effectors of the B-cell signalosome and can be activated by PMA and ionomycin, respectively. In small resting (G0) B cells, costimulation with PMA and ionomycin, but not PMA or ionomycin alone, induces cyclin D2 expression and cell-cycle progression. Consistent with this, we also showed that the BCR-mediated cyclin D2 induction could be abolished by pretreatment of resting B cells with specific inhibitors of capacitative Ca(2+) entry (SK&F 96365) or PKC (Gö6850). Our present results lead us to propose a model in which the B-cell signalosome targets cyclin D2 via the Ca(2+) and PKC-dependent signalling cascades to mediate cell-cycle progression in response to BCR engagement.[1]

References

  1. BCR targets cyclin D2 via Btk and the p85alpha subunit of PI3-K to induce cell cycle progression in primary mouse B cells. Glassford, J., Soeiro, I., Skarell, S.M., Banerji, L., Holman, M., Klaus, G.G., Kadowaki, T., Koyasu, S., Lam, E.W. Oncogene (2003) [Pubmed]
 
WikiGenes - Universities