The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases.

Carboxylesterases containing the sequence motif GGGX catalyze the hydrolysis of esters of chiral tertiary alcohols, albeit with only low to moderate enantioselectivity, for three model substrates (linalyl acetate, methyl-1-pentin-1-yl acetate, 2-phenyl-3-butin-2-yl acetate). In order to understand the molecular mechanism of enantiorecognition and to improve enantioselectivity for this interesting substrate class, the interaction of both enantiomers with the substrate binding sites of acetylcholinesterases and p-nitrobenzyl esterase from Bacillus subtilis was modeled and correlated to experimental enantioselectivity. For all substrate-enzyme pairs, enantiopreference and ranking by enantioselectivity could be predicted by the model. In p-nitrobenzyl esterase, one of the key residues in determining enantioselectivity was G105: exchange of this amino acid for an alanine residue led to a sixfold increase of enantioselectivity (E = 19) towards 2-phenyl-3-butin-2-yl acetate. However, the effect of this mutation is specific: the same mutant had the opposite enantiopreference towards the substrate linalyl acetate. Thus, depending on the substrate structure, the same mutant has either increased enantioselectivity or opposite enantiopreference compared to the wild-type enzyme.[1]

References

  1. A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. Henke, E., Bornscheuer, U.T., Schmid, R.D., Pleiss, J. Chembiochem (2003) [Pubmed]
 
WikiGenes - Universities