The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bacillus subtilis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bacillus subtilis

 

Psychiatry related information on Bacillus subtilis

 

High impact information on Bacillus subtilis

 

Chemical compound and disease context of Bacillus subtilis

 

Biological context of Bacillus subtilis

 

Anatomical context of Bacillus subtilis

 

Gene context of Bacillus subtilis

 

Analytical, diagnostic and therapeutic context of Bacillus subtilis

References

  1. Inhibition of the B. subtilis regulatory protein TRAP by the TRAP-inhibitory protein, AT. Valbuzzi, A., Yanofsky, C. Science (2001) [Pubmed]
  2. Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. Bernad, A., Zaballos, A., Salas, M., Blanco, L. EMBO J. (1987) [Pubmed]
  3. tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome. Grundy, F.J., Winkler, W.C., Henkin, T.M. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  4. Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Popham, D.L., Helin, J., Costello, C.E., Setlow, P. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  5. Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. Bono, H., Ogata, H., Goto, S., Kanehisa, M. Genome Res. (1998) [Pubmed]
  6. Mutagenicity, tumorigenicity, and electrophilic reactivity of the stereoisomeric platinum(II) complexes of 1,2-diaminocyclohexane. Leopold, W.R., Batzinger, R.P., Miller, E.C., Miller, J.A., Earhart, R.H. Cancer Res. (1981) [Pubmed]
  7. Crystallization and preliminary structural analysis of Bacillus subtilis adenylosuccinate lyase, an enzyme implicated in infantile autism. Redinbo, M.R., Eide, S.M., Stone, R.L., Dixon, J.E., Yeates, T.O. Protein Sci. (1996) [Pubmed]
  8. Developmental commitment in a bacterium. Dworkin, J., Losick, R. Cell (2005) [Pubmed]
  9. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Mandal, M., Boese, B., Barrick, J.E., Winkler, W.C., Breaker, R.R. Cell (2003) [Pubmed]
  10. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Jones, L.J., Carballido-López, R., Errington, J. Cell (2001) [Pubmed]
  11. Use of a lacZ fusion to study the role of the spoO genes of Bacillus subtilis in developmental regulation. Zuber, P., Losick, R. Cell (1983) [Pubmed]
  12. Cloned Bacillus subtilis DNA containing a gene that is activated early during sporulation. Segall, J., Losick, R. Cell (1977) [Pubmed]
  13. Expression of Tn9-derived chloramphenicol resistance in Bacillus subtilis. Goldfarb, D.S., Doi, R.H., Rodriguez, R.L. Nature (1981) [Pubmed]
  14. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Stachelhaus, T., Schneider, A., Marahiel, M.A. Science (1995) [Pubmed]
  15. Structure of the allosteric regulatory enzyme of purine biosynthesis. Smith, J.L., Zaluzec, E.J., Wery, J.P., Niu, L., Switzer, R.L., Zalkin, H., Satow, Y. Science (1994) [Pubmed]
  16. Chloramine mutagenesis in Bacillus subtilis. Shih, K.L., Lederberg, J. Science (1976) [Pubmed]
  17. Septation, dephosphorylation, and the activation of sigmaF during sporulation in Bacillus subtilis. King, N., Dreesen, O., Stragier, P., Pogliano, K., Losick, R. Genes Dev. (1999) [Pubmed]
  18. FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Beall, B., Lutkenhaus, J. Genes Dev. (1991) [Pubmed]
  19. Conformational alterations in the ermC transcript in vivo during induction. Mayford, M., Weisblum, B. EMBO J. (1989) [Pubmed]
  20. The amino acid sequence of the CCGG recognizing DNA methyltransferase M.BsuFI: implications for the analysis of sequence recognition by cytosine DNA methyltransferases. Walter, J., Noyer-Weidner, M., Trautner, T.A. EMBO J. (1990) [Pubmed]
  21. Positive and negative regulation of SMC-DNA interactions by ATP and accessory proteins. Hirano, M., Hirano, T. EMBO J. (2004) [Pubmed]
  22. Evidence that the cell wall of Bacillus subtilis is protonated during respiration. Calamita, H.G., Ehringer, W.D., Koch, A.L., Doyle, R.J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  23. Incorporation of N-acetyl-D-glucosamine from UDP-N-acetyl-D-glucosamine by isolated membranes of Bacillus subtilis. Identification of undecaprenyl poly(N-acetylglucosaminyl pyrophosphate). Bettinger, G.E., Chatterjee, A.N., Young, F.E. J. Biol. Chem. (1977) [Pubmed]
  24. Transmembrane organization of the Bacillus subtilis chemoreceptor McpB deduced by cysteine disulfide crosslinking. Bunn, M.W., Ordal, G.W. J. Mol. Biol. (2003) [Pubmed]
  25. Sporulation and delta-endotoxin synthesis by Bacillus thuringiensis. Aronson, A. Cell. Mol. Life Sci. (2002) [Pubmed]
  26. Inhibition of NADH-ubiquinone reductase activity by N,N'-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms. Yagi, T. Biochemistry (1987) [Pubmed]
  27. Isolation of a dnaA mutant of Bacillus subtilis defective in initiation of replication: amount of DnaA protein determines cells' initiation potential. Moriya, S., Kato, K., Yoshikawa, H., Ogasawara, N. EMBO J. (1990) [Pubmed]
  28. The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. Stirling, C.J., Szatmari, G., Stewart, G., Smith, M.C., Sherratt, D.J. EMBO J. (1988) [Pubmed]
  29. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. Mogk, A., Homuth, G., Scholz, C., Kim, L., Schmid, F.X., Schumann, W. EMBO J. (1997) [Pubmed]
  30. Sequence and domain relationships of ntrC and nifA from Klebsiella pneumoniae: homologies to other regulatory proteins. Drummond, M., Whitty, P., Wootton, J. EMBO J. (1986) [Pubmed]
  31. Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. Bab, I., Gazit, D., Chorev, M., Muhlrad, A., Shteyer, A., Greenberg, Z., Namdar, M., Kahn, A. EMBO J. (1992) [Pubmed]
  32. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Bryan, P., Pantoliano, M.W., Quill, S.G., Hsiao, H.Y., Poulos, T. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  33. The lumazine synthase-riboflavin synthase complex of Bacillus subtilis. Crystallization of reconstituted icosahedral beta-subunit capsids. Schott, K., Ladenstein, R., König, A., Bacher, A. J. Biol. Chem. (1990) [Pubmed]
  34. Structural and functional organization of the surfactin synthetase multienzyme system. Menkhaus, M., Ullrich, C., Kluge, B., Vater, J., Vollenbroich, D., Kamp, R.M. J. Biol. Chem. (1993) [Pubmed]
  35. Plant riboflavin biosynthesis. Cloning, chloroplast localization, expression, purification, and partial characterization of spinach lumazine synthase. Jordan, D.B., Bacot, K.O., Carlson, T.J., Kessel, M., Viitanen, P.V. J. Biol. Chem. (1999) [Pubmed]
  36. Spectroscopic characterization of the iron-sulfur cluster in Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase. Oñate, Y.A., Vollmer, S.J., Switzer, R.L., Johnson, M.K. J. Biol. Chem. (1989) [Pubmed]
 
WikiGenes - Universities