The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evidence that reactive oxygen species do not mediate NF-kappaB activation.

It has been postulated that reactive oxygen species (ROS) may act as second messengers leading to nuclear factor (NF)-kappaB activation. This hypothesis is mainly based on the findings that N-acetyl-L-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC), compounds recognized as potential antioxidants, can inhibit NF-kappaB activation in a wide variety of cell types. Here we reveal that both NAC and PDTC inhibit NF-kappaB activation independently of antioxidative function. NAC selectively blocks tumor necrosis factor (TNF)-induced signaling by lowering the affinity of receptor to TNF. PDTC inhibits the IkappaB-ubiquitin ligase activity in the cell-free system where extracellular stimuli-regulated ROS production does not occur. Furthermore, we present evidence that endogenous ROS produced through Rac/NADPH oxidase do not mediate NF-kappaB signaling, but instead lower the magnitude of its activation.[1]

References

  1. Evidence that reactive oxygen species do not mediate NF-kappaB activation. Hayakawa, M., Miyashita, H., Sakamoto, I., Kitagawa, M., Tanaka, H., Yasuda, H., Karin, M., Kikugawa, K. EMBO J. (2003) [Pubmed]
 
WikiGenes - Universities