The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Extracellular conserved cysteine forms an intersubunit disulphide bridge in the KCNK5 (TASK-2) K+ channel without having an essential effect upon activity.

The functional channel unit of K(+) channels with two pore regions in tandem is thought to be a homodimer and it has been suggested that this dimeric structure occurs by interaction of an extracellular domain, the self-interacting domain. Interaction and functional assembly have been studied in some detail for KCNK1. It is proposed that a disulphide bond between highly conserved C69 residues of the self-interacting domain is formed which is essential for channel activity. We mutated C51, the equivalent residue in the pH-dependent KCNK5, to study its effect on channel function. Western analysis of proteins from cells expressing epitope-tagged KCNK5 and KCNK5-C51S was consistent with reduction-sensitive self-association of monomers dependent upon the presence of C51. Patch-clamp analysis of heterologously expressed KCNK5-C51S, however, revealed it was functional and indistinguishable in rectification properties and pH dependence from the non-mutated channel. The same result was found with KCNK5-C115S. It is concluded that the proposed disulphide bond between cysteine 51 residues of KCNK5 subunits does occur and preserves a dimeric structure in the detergent solubilized complex. Functional assays, on the other hand, suggest that such a disulphide bridge is not essential for correct functional expression.[1]

References

 
WikiGenes - Universities