The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SOD1  -  superoxide dismutase 1, soluble

Homo sapiens

Synonyms: ALS, ALS1, HEL-S-44, IPOA, SOD, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SOD1


Psychiatry related information on SOD1


High impact information on SOD1


Chemical compound and disease context of SOD1

  • To test the hypothesis that the toxicity of mutant SOD1 originates in Cu(2+)-mediated formation of toxic radicals, we generated transgenic mice that express human SOD1 that encodes disease-linked mutations at two of the four histidine residues that are crucial for the coordinated binding of copper (H46R/H48Q) [18].
  • Approximately 10% of all familial cases of amyotrophic lateral sclerosis (fALS) are linked to mutations in the SOD1 gene, which encodes the copper/zinc superoxide dismutase (CuZnSOD) [19].
  • In this study, we have challenged with Abeta, either in the presence or in the absence of 17beta-estradiol, differentiated human neuroblastoma SH-SY5Y cells (named line SH) and the same line overexpressing anti-oxidant enzyme superoxide dismutase 1 (SOD1; named line WT) [20].
  • We further demonstrate that ebselen, an anti-oxidant drug already safely used in human studies and that acts as a Prx mimic, is able to ameliorate the toxicity of mutant SOD1 in our cell-culture model [21].
  • The purpose of this study was to investigate the activities of SOD-1 and glutathione peroxidase (GSH-Px) enzymes and the levels of their cofactors zinc (Zn), copper (Cu) and selenium (Se) in plasma of 20 Down syndrome patients [22].

Biological context of SOD1

  • Complete screening of the SOD1 coding region revealed that the mutation Ala4 to Val in exon 1 was the most frequent one; mutations were identified in exons 2, 4, and 5 but not in the active site region formed by exon 3 [1].
  • "Sporadic" motoneuron disease due to familial SOD1 mutation with low penetrance [23].
  • Accumulation of SOD1 aggregates is believed to interfere with axonal transport, protein degradation and anti-apoptotic functions of the neuronal cellular machinery [24].
  • Molecular mapping of 21 features associated with partial monosomy 21: involvement of the APP-SOD1 region [9].
  • A late event in the stress-induced molecular sequence was the induction of SOD1, catalase, and HSP27 coinciding with development of the fully senescent phenotype [25].

Anatomical context of SOD1

  • Such endothelial dysfunction was not found in transgenic mice expressing both APP and superoxide dismutase-1 (SOD1) or in APP transgenics in which SOD was topically applied to the cerebral cortex [26].
  • In spinal cord neurons of human FALS patients and in transgenic mice expressing these mutant proteins, aggregates containing FALS SOD1 are observed [24].
  • Deficient S-nitrosylation is particularly prominent in the mitochondria of cells expressing SOD1 mutants [27].
  • In vivo, alphaB-crystallin immunoreactivity was most abundant in oligodendrocytes and up-regulated in astrocytes of symptomatic mice; neither of these cell-types accumulated mutant SOD1 immunoreactivity [28].
  • Thus, our results suggest that an adverse interaction among misfolded SOD1, NEDL1, translocon-associated protein-delta, and Dishevelled-1 forms a ubiquitinated protein complex that is included in potentially cytotoxic protein aggregates and that mutually affects their functions, leading to motor neuron death in FALS [29].

Associations of SOD1 with chemical compounds

  • Taken together, our findings suggest that caspase-3 cleavage of EAAT2 is one mechanism responsible for the impairment of glutamate uptake in mutant SOD1-linked ALS [30].
  • The monounsaturated FA, oleic acid, directly bound to SOD1 and was characterized by a solid-phase FA binding assay using oleate-Sepharose [31].
  • Mutations of Cu/Zn superoxide dismutase 1 (SOD1), a metalloenzyme catalyzing the conversion of superoxide anion to hydrogen peroxide (H(2)O(2)), are linked to motor neuron degeneration [4].
  • Bicarbonate anion (HCO3-) enhances the covalent aggregation of hSOD1 mediated by the SOD1 peroxidase-dependent formation of carbonate radical anion (CO3*-), a potent and selective oxidant [32].
  • SOD1, CAT and GST activity and glutathione content, which remained at similar levels in the 2 cell lines for all times studied, appeared unrelated to the differentiation process [33].
  • We show that in mammalian cells mutant SOD1 interacts preferentially with the mitochondrial form of KARS (mitoKARS) [34].
  • Cysteine 111 glutathionylation promotes SOD1 monomer formation, a necessary initiating step in SOD1 aggregation, by causing a 2-fold increase in the K(d) [35].

Physical interactions of SOD1

  • Overexpression of X11alpha inhibited SOD1 activity in transfected Chinese hamster ovary cells which suggests that X11alpha binding to CCS is inhibitory to SOD1 activation [36].
  • Since Jun homodimers cannot bind to AP-1 sites in a preferred orientation, the effects of the orientations of nonconsensus AP-1 sites on the stabilities of Jun-Jun-NFAT1 complexes are likely to be due to asymmetric conformational changes in the two subunits of the homodimer [37].
  • Human p53 binds DNA as a protein homodimer but monomeric variants retain full transcription transactivation activity [38].
  • Commentary on: return of the cycad hypothesis - does the amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health [39]?
  • Although E2F1 can bind DNA as a homodimer and increase promoter activity, optimal DNA-binding and transcriptional activity occurs in the heterodimeric form [40].

Enzymatic interactions of SOD1

  • CCS also oxidizes an intrasubunit disulfide in SOD1 [41].
  • CD69 is a phosphorylated disulfide-linked homodimer that appears on the surface of human T, B cells and thymocytes in the early steps of activation; its molecular mass is 28 to 34 kDa under reducing conditions [42].
  • This implies a conserved role for N-domain dimerization, which might include influencing interactions with cytokine receptors, favoring homodimer formation or accelerating formation of the phosphorylated STAT dimer [43].
  • Plant acetohydroxy acid isomeroreductase is a stable homodimer which catalyzes in the presence of magnesium an alkyl migration followed by a NADPH-dependent reduction [44].

Regulatory relationships of SOD1

  • Overexpression of Cu/Zn superoxide dismutase 1 (SOD1) in monocytes blocks reactive oxygen species-induced inhibition of cell growth and apoptosis and renders cells resistant to the toxic effect of tumor necrosis factor (TNF)-alpha, suggesting that TNF-alpha represses the SOD1 gene in these cells [45].
  • We therefore conclude that mutant SOD1 overexpression promotes neither Abeta toxicity nor brain accumulation in these ALS models [46].
  • Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1 [47].
  • Transient transfection and in vitro transcription assays indicate that ATF3 represses transcription as a homodimer; however, ATF3 can activate transcription when coexpressed with its heterodimeric partners or other proteins [48].
  • As a result of this physical interaction, binding of h-TR beta 1 to its hormone response elements either as homodimer or as a heterodimer with the retinoic X receptor was inhibited by p53 in a concentration-dependent manner [49].

Other interactions of SOD1

  • RESULTS: ALS2-deficient mice demonstrated progressive axonal degeneration in the lateral spinal cord that is also prominent in mutant SOD1 mice [50].
  • Transgenic mice overexpressing the non-mutated SOD1 gene did not overexpress S100A6, although glial fibrillary associated protein astrogliosis was seen [51].
  • Total SOD activity was fairly constant, whereas the ratio SOD2/SOD1 was much lower in TF than in NF [52].
  • Exercise-induced eNOS expression is transient and reversible and regulated by factors such as angiogenesis, arteriogenesis and antioxidative effects including upregulation of superoxide dismutases (SOD1, SOD3) and downregulation of NAD(P)H oxidase, which likely blunts the effects of oxidative stress [53].
  • This suggests that the decreased expression of PRDX2 may contribute to the altered redox state in DS at levels comparable to that of the increased expression of SOD1 [54].

Analytical, diagnostic and therapeutic context of SOD1


  1. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Deng, H.X., Hentati, A., Tainer, J.A., Iqbal, Z., Cayabyab, A., Hung, W.Y., Getzoff, E.D., Hu, P., Herzfeldt, B., Roos, R.P. Science (1993) [Pubmed]
  2. The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. Khare, S.D., Caplow, M., Dokholyan, N.V. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  3. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Alexianu, M.E., Kozovska, M., Appel, S.H. Neurology (2001) [Pubmed]
  4. Aberrant neuronal and mitochondrial proteins in hippocampus of transgenic mice overexpressing human Cu/Zn superoxide dismutase 1. Shin, J.H., London, J., Le Pecheur, M., Höger, H., Pollak, D., Lubec, G. Free Radic. Biol. Med. (2004) [Pubmed]
  5. Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome. Cheroni, C., Peviani, M., Cascio, P., Debiasi, S., Monti, C., Bendotti, C. Neurobiol. Dis. (2005) [Pubmed]
  6. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Deng, H.X., Shi, Y., Furukawa, Y., Zhai, H., Fu, R., Liu, E., Gorrie, G.H., Khan, M.S., Hung, W.Y., Bigio, E.H., Lukas, T., Dal Canto, M.C., O'Halloran, T.V., Siddique, T. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  7. Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. Cao, X., Antonyuk, S.V., Seetharaman, S.V., Whitson, L.J., Taylor, A.B., Holloway, S.P., Strange, R.W., Doucette, P.A., Valentine, J.S., Tiwari, A., Hayward, L.J., Padua, S., Cohlberg, J.A., Hasnain, S.S., Hart, P.J. J. Biol. Chem. (2008) [Pubmed]
  8. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein. Son, M., Leary, S.C., Romain, N., Pierrel, F., Winge, D.R., Haller, R.G., Elliott, J.L. J. Biol. Chem. (2008) [Pubmed]
  9. Molecular mapping of 21 features associated with partial monosomy 21: involvement of the APP-SOD1 region. Chettouh, Z., Croquette, M.F., Delobel, B., Gilgenkrants, S., Leonard, C., Maunoury, C., Prieur, M., Rethoré, M.O., Sinet, P.M., Chery, M. Am. J. Hum. Genet. (1995) [Pubmed]
  10. Ubiquitin-only intraneuronal inclusion in the substantia nigra is a characteristic feature of motor neurone disease with dementia. Al-Sarraj, S., Maekawa, S., Kibble, M., Everall, I., Leigh, N. Neuropathol. Appl. Neurobiol. (2002) [Pubmed]
  11. Human umbilical cord blood cells ameliorate Alzheimer's disease in transgenic mice. Ende, N., Chen, R., Ende-Harris, D. Journal of medicine. (2001) [Pubmed]
  12. Characterization of hemizygous SOD1/wild-type transgenic mice with the SHIRPA primary screen and tests of sensorimotor function and anxiety. Lalonde, R., Dumont, M., Paly, E., London, J., Strazielle, C. Brain Res. Bull. (2004) [Pubmed]
  13. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Selverstone Valentine, J., Doucette, P.A., Zittin Potter, S. Annu. Rev. Biochem. (2005) [Pubmed]
  14. The retroviral enzymes. Katz, R.A., Skalka, A.M. Annu. Rev. Biochem. (1994) [Pubmed]
  15. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Nair, S.K., Burley, S.K. Cell (2003) [Pubmed]
  16. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Hadano, S., Hand, C.K., Osuga, H., Yanagisawa, Y., Otomo, A., Devon, R.S., Miyamoto, N., Showguchi-Miyata, J., Okada, Y., Singaraja, R., Figlewicz, D.A., Kwiatkowski, T., Hosler, B.A., Sagie, T., Skaug, J., Nasir, J., Brown, R.H., Scherer, S.W., Rouleau, G.A., Hayden, M.R., Ikeda, J.E. Nat. Genet. (2001) [Pubmed]
  17. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Jin, D.Y., Spencer, F., Jeang, K.T. Cell (1998) [Pubmed]
  18. Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Wang, J., Xu, G., Gonzales, V., Coonfield, M., Fromholt, D., Copeland, N.G., Jenkins, N.A., Borchelt, D.R. Neurobiol. Dis. (2002) [Pubmed]
  19. Superoxide dismutase mutations of familial amyotrophic lateral sclerosis and the oxidative inactivation of calcineurin. Volkel, H., Scholz, M., Link, J., Selzle, M., Werner, P., Tunnemann, R., Jung, G., Ludolph, A.C., Reuter, A. FEBS Lett. (2001) [Pubmed]
  20. Overexpression of superoxide dismutase 1 protects against beta-amyloid peptide toxicity: effect of estrogen and copper chelators. Celsi, F., Ferri, A., Casciati, A., D'Ambrosi, N., Rotilio, G., Costa, A., Volonté, C., Carrì, M.T. Neurochem. Int. (2004) [Pubmed]
  21. Impairment of mitochondrial anti-oxidant defence in SOD1-related motor neuron injury and amelioration by ebselen. Wood-Allum, C.A., Barber, S.C., Kirby, J., Heath, P., Holden, H., Mead, R., Higginbottom, A., Allen, S., Beaujeux, T., Alexson, S.E., Ince, P.G., Shaw, P.J. Brain (2006) [Pubmed]
  22. Antioxidative metabolism in Down syndrome. Tekşen, F., Sayli, B.S., Aydin, A., Sayal, A., Işimer, A. Biological trace element research. (1998) [Pubmed]
  23. "Sporadic" motoneuron disease due to familial SOD1 mutation with low penetrance. Suthers, G., Laing, N., Wilton, S., Dorosz, S., Waddy, H. Lancet (1994) [Pubmed]
  24. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Elam, J.S., Taylor, A.B., Strange, R., Antonyuk, S., Doucette, P.A., Rodriguez, J.A., Hasnain, S.S., Hayward, L.J., Valentine, J.S., Yeates, T.O., Hart, P.J. Nat. Struct. Biol. (2003) [Pubmed]
  25. Loss of proliferative capacity and induction of senescence in oxidatively stressed human fibroblasts. Chen, J.H., Stoeber, K., Kingsbury, S., Ozanne, S.E., Williams, G.H., Hales, C.N. J. Biol. Chem. (2004) [Pubmed]
  26. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Iadecola, C., Zhang, F., Niwa, K., Eckman, C., Turner, S.K., Fischer, E., Younkin, S., Borchelt, D.R., Hsiao, K.K., Carlson, G.A. Nat. Neurosci. (1999) [Pubmed]
  27. S-nitrosothiol depletion in amyotrophic lateral sclerosis. Schonhoff, C.M., Matsuoka, M., Tummala, H., Johnson, M.A., Estevéz, A.G., Wu, R., Kamaid, A., Ricart, K.C., Hashimoto, Y., Gaston, B., Macdonald, T.L., Xu, Z., Mannick, J.B. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  28. Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration: alphaB-crystallin modulates aggregation. Wang, J., Xu, G., Li, H., Gonzales, V., Fromholt, D., Karch, C., Copeland, N.G., Jenkins, N.A., Borchelt, D.R. Hum. Mol. Genet. (2005) [Pubmed]
  29. NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. Miyazaki, K., Fujita, T., Ozaki, T., Kato, C., Kurose, Y., Sakamoto, M., Kato, S., Goto, T., Itoyama, Y., Aoki, M., Nakagawara, A. J. Biol. Chem. (2004) [Pubmed]
  30. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. Boston-Howes, W., Gibb, S.L., Williams, E.O., Pasinelli, P., Brown, R.H., Trotti, D. J. Biol. Chem. (2006) [Pubmed]
  31. Unsaturated fatty acids induce cytotoxic aggregate formation of amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutants. Kim, Y.J., Nakatomi, R., Akagi, T., Hashikawa, T., Takahashi, R. J. Biol. Chem. (2005) [Pubmed]
  32. The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidation products. Zhang, H., Andrekopoulos, C., Joseph, J., Crow, J., Kalyanaraman, B. Free Radic. Biol. Med. (2004) [Pubmed]
  33. Modifications of the anti-oxidant metabolism during proliferation and differentiation of colon tumor cell lines. Bravard, A., Beaumatin, J., Dussaulx, E., Lesuffleur, T., Zweibaum, A., Luccioni, C. Int. J. Cancer (1994) [Pubmed]
  34. Lysyl-tRNA synthetase is a target for mutant SOD1 toxicity in mitochondria. Kawamata, H., Magrané, J., Kunst, C., King, M.P., Manfredi, G. J. Biol. Chem. (2008) [Pubmed]
  35. Modifications of superoxide dismutase (SOD1) in human erythrocytes: a possible role in amyotrophic lateral sclerosis. Wilcox, K.C., Zhou, L., Jordon, J.K., Huang, Y., Yu, Y., Redler, R.L., Chen, X., Caplow, M., Dokholyan, N.V. J. Biol. Chem. (2009) [Pubmed]
  36. The neuronal adaptor protein X11alpha interacts with the copper chaperone for SOD1 and regulates SOD1 activity. McLoughlin, D.M., Standen, C.L., Lau, K.F., Ackerley, S., Bartnikas, T.P., Gitlin, J.D., Miller, C.C. J. Biol. Chem. (2001) [Pubmed]
  37. Asymmetric recognition of nonconsensus AP-1 sites by Fos-Jun and Jun-Jun influences transcriptional cooperativity with NFAT1. Ramirez-Carrozzi, V., Kerppola, T. Mol. Cell. Biol. (2003) [Pubmed]
  38. Human p53 binds DNA as a protein homodimer but monomeric variants retain full transcription transactivation activity. Tarunina, M., Jenkins, J.R. Oncogene (1993) [Pubmed]
  39. Commentary on: return of the cycad hypothesis - does the amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Cox, P.A., Banack, S., Murch, S., Sacks, O. Neuropathol. Appl. Neurobiol. (2006) [Pubmed]
  40. Introduction to the E2F family: protein structure and gene regulation. Slansky, J.E., Farnham, P.J. Curr. Top. Microbiol. Immunol. (1996) [Pubmed]
  41. Activation of superoxide dismutases: putting the metal to the pedal. Culotta, V.C., Yang, M., O'Halloran, T.V. Biochim. Biophys. Acta (2006) [Pubmed]
  42. CD69 in resting and activated T lymphocytes. Its association with a GTP binding protein and biochemical requirements for its expression. Risso, A., Smilovich, D., Capra, M.C., Baldissarro, I., Yan, G., Bargellesi, A., Cosulich, M.E. J. Immunol. (1991) [Pubmed]
  43. N-domain-dependent nonphosphorylated STAT4 dimers required for cytokine-driven activation. Ota, N., Brett, T.J., Murphy, T.L., Fremont, D.H., Murphy, K.M. Nat. Immunol. (2004) [Pubmed]
  44. A loop deletion in the plant acetohydroxy acid isomeroreductase homodimer generates an active monomer with reduced stability and altered magnesium affinity. Wessel, P.M., Biou, V., Douce, R., Dumas, R. Biochemistry (1998) [Pubmed]
  45. Tumor necrosis factor-alpha down-regulates human Cu/Zn superoxide dismutase 1 promoter via JNK/AP-1 signaling pathway. Afonso, V., Santos, G., Collin, P., Khatib, A.M., Mitrovic, D.R., Lomri, N., Leitman, D.C., Lomri, A. Free Radic. Biol. Med. (2006) [Pubmed]
  46. Brain beta-amyloid accumulation in transgenic mice expressing mutant superoxide dismutase 1. Turner, B.J., Li, Q.X., Laughton, K.M., Masters, C.L., Lopes, E.C., Atkin, J.D., Cheema, S.S. Neurochem. Res. (2004) [Pubmed]
  47. Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Takeuchi, H., Kobayashi, Y., Yoshihara, T., Niwa, J., Doyu, M., Ohtsuka, K., Sobue, G. Brain Res. (2002) [Pubmed]
  48. ATF3 and stress responses. Hai, T., Wolfgang, C.D., Marsee, D.K., Allen, A.E., Sivaprasad, U. Gene Expr. (1999) [Pubmed]
  49. Modulation of the transcriptional activity of thyroid hormone receptors by the tumor suppressor p53. Yap, N., Yu, C.L., Cheng, S.Y. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  50. Progressive spinal axonal degeneration and slowness in ALS2-deficient mice. Yamanaka, K., Miller, T.M., McAlonis-Downes, M., Chun, S.J., Cleveland, D.W. Ann. Neurol. (2006) [Pubmed]
  51. S100A6 overexpression within astrocytes associated with impaired axons from both ALS mouse model and human patients. Hoyaux, D., Boom, A., Van den Bosch, L., Belot, N., Martin, J.J., Heizmann, C.W., Kiss, R., Pochet, R. J. Neuropathol. Exp. Neurol. (2002) [Pubmed]
  52. SOD2: a new type of tumor-suppressor gene? Bravard, A., Sabatier, L., Hoffschir, F., Ricoul, M., Luccioni, C., Dutrillaux, B. Int. J. Cancer (1992) [Pubmed]
  53. Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Kojda, G., Hambrecht, R. Cardiovasc. Res. (2005) [Pubmed]
  54. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, is under-expressed in Down syndrome fetal brains. Sánchez-Font, M.F., Sebastià, J., Sanfeliu, C., Cristòfol, R., Marfany, G., Gonzàlez-Duarte, R. Cell. Mol. Life Sci. (2003) [Pubmed]
  55. GDNF delivery using human neural progenitor cells in a rat model of ALS. Klein, S.M., Behrstock, S., McHugh, J., Hoffmann, K., Wallace, K., Suzuki, M., Aebischer, P., Svendsen, C.N. Hum. Gene Ther. (2005) [Pubmed]
  56. Cerebral neurons of transgenic ALS mice are vulnerable to glutamate release stimulation but not to increased extracellular glutamate due to transport blockade. Tovar-y-Romo, L.B., Tapia, R. Exp. Neurol. (2006) [Pubmed]
WikiGenes - Universities