The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators.

Anteroposterior patterning in Drosophila melanogaster is dependent on the sequence-specific RNA-binding protein Smaug, which binds to and regulates the translation of nanos (nos) mRNA. Here we demonstrate that the sterile-alpha motif (SAM) domain of Smaug functions as an RNA-recognition domain. This represents a new function for the SAM domain family, which is well characterized for mediating protein-protein interactions. Using homology modeling and site-directed mutagenesis, we have localized the RNA-binding surface of the Smaug SAM domain and have elaborated the RNA consensus sequence required for binding. Residues that compose the RNA-binding surface are conserved in a subgroup of SAM domain-containing proteins, suggesting that the function of the domain is conserved from yeast to humans. We show here that the SAM domain of Saccharomyces cerevisiae Vts1 binds RNA with the same specificity as Smaug and that Vts1 induces transcript degradation through a mechanism involving the cytoplasmic deadenylase CCR4. Together, these results suggest that Smaug and Vts1 define a larger class of post-transcriptional regulators that act in part through a common transcript-recognition mechanism.[1]

References

  1. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Aviv, T., Lin, Z., Lau, S., Rendl, L.M., Sicheri, F., Smibert, C.A. Nat. Struct. Biol. (2003) [Pubmed]
 
WikiGenes - Universities