The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis.

There is evidence that production and turnover of CSF help to clear toxic molecules such as amyloid-beta peptide (Abeta) from the interstitial-fluid space of the brain to the bloodstream. Two changes in CSF circulatory physiology have been noted as part of ageing: first, a trend towards lower CSF production, hence a decrease in CSF turnover; and second, greater resistance to CSF outflow. Our hypothesis is that, all else being equal, the initially dominant physiological change determines whether CSF circulatory failure manifests as Alzheimer's disease (AD) or as normal-pressure hydrocephalus (NPH). If CSF production failure predominates, AD develops. However, if resistance to CSF outflow predominates, NPH results. Once either disease process takes hold, the risk of the other disorder may rise. In AD, increased deposition of Abeta in the meninges leads to greater resistance to CSF outflow. In NPH, raised CSF pressure causes lower CSF production and less clearance of Abeta. The disorders may ultimately converge in vulnerable individuals, resulting in a hybrid as has been observed in several clinical series. We postulate a new nosological entity of CSF circulatory failure, with features of AD and NPH. NPH-AD may cover an important subset of patients who carry the diagnosis of either AD or NPH.[1]

References

  1. Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Silverberg, G.D., Mayo, M., Saul, T., Rubenstein, E., McGuire, D. Lancet neurology. (2003) [Pubmed]
 
WikiGenes - Universities