The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Photodegradation of direct yellow-12 using UV/H2O2/Fe2+.

A detailed investigation of photodegradation of direct yellow-12 (DY12) using UV/H(2)O(2)/Fe(2+) has been carried out in a photochemical reactor. Experiments studied degradation as a function of concentration, decolorization and reduction in chemical oxygen demand (COD). The effect of operating parameters, such as UV, pH, amount of Fenton's reagent (H(2)O(2) and FeSO(4)), and amount of DY12 dye has also been determined. It has been observed that simultaneous utilization of UV irradiation with Fenton's reagent increases the degradation rate of DY12 dye. The dye quickly losses its color and there is an appreciable decrease in COD value, indicating that the dissolved organic have been oxidized. The kinetics of degradation of the dye in dilute aqueous solutions follows pseudo-first order kinetics. Final products detected at the end of the reaction include NO(3)(-), NO(2)(-), N(2)O, NO(2), SO(2), CO(2) and CO. Results indicate that dye degradation is dependent upon pH, UV-intensity, concentration of Fenton's reagent and dye. Acidic pH has been found to be more suitable in comparison to neutral and alkaline. The optimum concentration of Fenton's reagent (H(2)O(2)/Fe(2+)) was found as 1500/500 mg l(-1) for 50 mg l(-1) DY12 dye in water at pH 4. The results indicate that the treatment of DY12 dye wastewater with UV/Fe(2+)/H(2)O(2) system is efficient.[1]


  1. Photodegradation of direct yellow-12 using UV/H2O2/Fe2+. Rathi, A., Rajor, H.K., Sharma, R.K. Journal of hazardous materials. (2003) [Pubmed]
WikiGenes - Universities