The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Phosphorylation of phospholamban in the intact heart. A study on the physiological role of the Ca(2+)-calmodulin-dependent protein kinase system.

The aim of the present study was to further elucidate the physiological role of the calcium-calmodulin (Ca(2+)-Cm)-dependent protein kinase system on phospholamban phosphorylation in the intact functioning heart. The effect of increasing extracellular calcium concentration [Ca]o on phospholamban phosphorylation (PHPL) was studied under different experimental conditions: (a) regular twitches and ryanodine induced-tetani both in the presence and in the absence of 3 x 10(-8) M isoproterenol and (b) Post-stimulation potentiation (PSP), i.e. the potentiation of contractility that follows a period of rapid repetitive stimulation. In the regular twitch, the increase in [Ca]o enhanced contractility both, in the absence and in the presence of beta-stimulation without changing basal or isoproterenol stimulated cAMP levels respectively. This increase in contractility was accompanied by a significant enhancement of PHPL-from 90.6 +/- 16.4 to 216 +/- 35.2 pmols 32Pi/mg protein at 0.25 and 3.85 mM [Ca]o respectively-only when isoproterenol was present. The calmodulin antagonist W-7 significantly decreased the isoproterenol- induced phosphorylation of phospholamban at [Ca]o 1.35 mM. Similar results were obtained under tetanic conditions. When myocardial contractility was enhanced by PSP up to ten-times with respect to the regular twitch, no detectable effect in PHPL was observed. Indirect evidence obtained from skinned rat cardiac trabeculae suggested that the failure of the cAMP-independent mechanisms to phosphorylate phospholamban is not related to a deficient increase in intracellular calcium. The results support the notion that the increase in intracellular calcium induces an increase in PHPL only at high intracellular cAMP levels.[1]

References

  1. Phosphorylation of phospholamban in the intact heart. A study on the physiological role of the Ca(2+)-calmodulin-dependent protein kinase system. Napolitano, R., Vittone, L., Mundiña, C., Chiappe de Cingolani, G., Mattiazzi, A. J. Mol. Cell. Cardiol. (1992) [Pubmed]
 
WikiGenes - Universities