The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Pln  -  phospholamban

Rattus norvegicus

Synonyms: Cardiac phospholamban, PLB
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pln


Psychiatry related information on Pln


High impact information on Pln


Chemical compound and disease context of Pln


Biological context of Pln


Anatomical context of Pln

  • We found that overexpression of AC(VI) down-regulated mRNA and protein expression of phospholamban, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase [15].
  • Following AC(VI) gene transfer, when cardiac myocytes were stimulated with isoproterenol or NKH477, a water-soluble forskolin analog that directly stimulates AC, expression of ATF3 protein was increased even more, which correlated with reduced expression of PLB [15].
  • Myocytes were transfected with 21-nucleotide duplexes of small interfering RNA (siRNA) targeting PLB (30 nmol/l) or with scramble sequence using a haemagglutinating virus of Japan (HVJ) envelope vector [16].
  • Thyroid hormone exerts positive inotropic effects on the heart mediated in part by its regulation of calcium transporter proteins, including sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2), phospholamban (PLB), and Na(+)/Ca(2+) exchanger (NCX) [18].
  • Our data confirm the co-expression of PLB and SERCA2a in cardiac muscle and the very low levels (in pig and rabbit) or the absence (in rat and mouse) of PLB protein in the slow skeletal muscle [17].

Associations of Pln with chemical compounds

  • We further demonstrate that SLN is localized within the SR membrane similar to PLB and SR Ca(2+) ATPase [19].
  • Furthermore, triamcinolone treatment resulted in reduced levels of SERCA2a (-40 %, P < 0.05) and increased levels of SLN mRNA (+100 %, P < 0.05), while the decrease in PLB mRNA (-31 %, P = 0.277) did not reach statistical significance [20].
  • Thyroid hormone control of contraction and the Ca(2+)-ATPase/phospholamban complex in adult rat ventricular myocytes [21].
  • Also, insulin treatment almost completely normalized phosphorylation of PLB at threonine 17 in female diabetic rats; however, the increase was significantly greater than that identified for insulin-treated male diabetic rats [22].
  • Insulin treatment completely normalized blood glucose level, cardiac SERCA2a and PLB protein levels, and the decrease in MHC-beta levels in both male and female diabetic rats [22].

Enzymatic interactions of Pln

  • In hypertrophic hearts, quantitative immunoblotting analyses showed increased levels both of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and phosphorylated phospholamban, along with decreased levels of total phospholamban, which is in line with strengthened right ventricular systolic function [23].

Regulatory relationships of Pln


Other interactions of Pln


Analytical, diagnostic and therapeutic context of Pln


  1. Time course and mechanisms of phosphorylation of phospholamban residues in ischemia-reperfused rat hearts. Dissociation of phospholamban phosphorylation pathways. Vittone, L., Mundiña-Weilenmann, C., Said, M., Ferrero, P., Mattiazzi, A. J. Mol. Cell. Cardiol. (2002) [Pubmed]
  2. Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia-reperfusion injury. Xie, Y., Zhu, Y., Zhu, W.Z., Chen, L., Zhou, Z.N., Yuan, W.J., Yang, H.T. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
  3. Increased susceptibility to ventricular arrhythmias is associated with changes in Ca2+ regulatory proteins in paraplegic rats. Rodenbaugh, D.W., Collins, H.L., Nowacek, D.G., DiCarlo, S.E. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  4. Altered phospholamban-calcium ATPase interaction in cardiac sarcoplasmic reticulum during the progression of sepsis. Wu, L.L., Tang, C., Dong, L.W., Liu, M.S. Shock (2002) [Pubmed]
  5. Effects of terbutaline on force and intracellular calcium in slow-twitch skeletal muscle fibres of the rat. Ha, T.N., Posterino, G.S., Fryer, M.W. Br. J. Pharmacol. (1999) [Pubmed]
  6. Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. Iwanaga, Y., Hoshijima, M., Gu, Y., Iwatate, M., Dieterle, T., Ikeda, Y., Date, M.O., Chrast, J., Matsuzaki, M., Peterson, K.L., Chien, K.R., Ross, J. J. Clin. Invest. (2004) [Pubmed]
  7. The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle. Jorgensen, A.O., Shen, A.C., Arnold, W., McPherson, P.S., Campbell, K.P. J. Cell Biol. (1993) [Pubmed]
  8. Modulation of ventricular function through gene transfer in vivo. Hajjar, R.J., Schmidt, U., Matsui, T., Guerrero, J.L., Lee, K.H., Gwathmey, J.K., Dec, G.W., Semigran, M.J., Rosenzweig, A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. Depletion of Ca2+ from the sarcoplasmic reticulum of cardiac muscle prompts phosphorylation of phospholamban to stimulate store refilling. Bhogal, M.S., Colyer, J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  10. Angiotensin type 1 receptor antagonism with irbesartan inhibits ventricular hypertrophy and improves diastolic function in the remodeling post-myocardial infarction ventricle. Ambrose, J., Pribnow, D.G., Giraud, G.D., Perkins, K.D., Muldoon, L., Greenberg, B.H. J. Cardiovasc. Pharmacol. (1999) [Pubmed]
  11. Mechanisms involved in the acidosis enhancement of the isoproterenol-induced phosphorylation of phospholamban in the intact heart. Vittone, L., Mundiña-Weilenmann, C., Said, M., Mattiazzi, A. J. Biol. Chem. (1998) [Pubmed]
  12. G(i) protein-mediated functional compartmentalization of cardiac beta(2)-adrenergic signaling. Kuschel, M., Zhou, Y.Y., Cheng, H., Zhang, S.J., Chen, Y., Lakatta, E.G., Xiao, R.P. J. Biol. Chem. (1999) [Pubmed]
  13. Influence of long-term treatment of imidapril on mortality, cardiac function, and gene expression in congestive heart failure due to myocardial infarction. Ren, B., Shao, Q., Ganguly, P.K., Tappia, P.S., Takeda, N., Dhalla, N.S. Can. J. Physiol. Pharmacol. (2004) [Pubmed]
  14. Chronic effects of enalapril and amlodipine on cardiac remodeling in cardiomyopathic hamster hearts. Watanabe, M., Kawaguchi, H., Onozuka, H., Mikami, T., Urasawa, K., Okamoto, H., Watanabe, S., Abe, K., Kitabatake, A. J. Cardiovasc. Pharmacol. (1998) [Pubmed]
  15. Adenylyl cyclase type VI gene transfer reduces phospholamban expression in cardiac myocytes via activating transcription factor 3. Gao, M.H., Tang, T., Guo, T., Sun, S.Q., Feramisco, J.R., Hammond, H.K. J. Biol. Chem. (2004) [Pubmed]
  16. Phospholamban ablation by RNA interference increases Ca2+ uptake into rat cardiac myocyte sarcoplasmic reticulum. Watanabe, A., Arai, M., Yamazaki, M., Koitabashi, N., Wuytack, F., Kurabayashi, M. J. Mol. Cell. Cardiol. (2004) [Pubmed]
  17. Sarcolipin and phospholamban mRNA and protein expression in cardiac and skeletal muscle of different species. Vangheluwe, P., Schuermans, M., Zádor, E., Waelkens, E., Raeymaekers, L., Wuytack, F. Biochem. J. (2005) [Pubmed]
  18. Differential regulation of SR calcium transporters by thyroid hormone in rat atria and ventricles. Shenoy, R., Klein, I., Ojamaa, K. Am. J. Physiol. Heart Circ. Physiol. (2001) [Pubmed]
  19. Overexpression of sarcolipin decreases myocyte contractility and calcium transient. Babu, G.J., Zheng, Z., Natarajan, P., Wheeler, D., Janssen, P.M., Periasamy, M. Cardiovasc. Res. (2005) [Pubmed]
  20. Corticosteroids decrease mRNA levels of SERCA pumps, whereas they increase sarcolipin mRNA in the rat diaphragm. Gayan-Ramirez, G., Vanzeir, L., Wuytack, F., Decramer, M. J. Physiol. (Lond.) (2000) [Pubmed]
  21. Thyroid hormone control of contraction and the Ca(2+)-ATPase/phospholamban complex in adult rat ventricular myocytes. Holt, E., Sjaastad, I., Lunde, P.K., Christensen, G., Sejersted, O.M. J. Mol. Cell. Cardiol. (1999) [Pubmed]
  22. Gender differences in myosin heavy chain-beta and phosphorylated phospholamban in diabetic rat hearts. Zhong, Y., Reiser, P.J., Matlib, M.A. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  23. Effect of endothelin antagonism on contractility, intracellular calcium regulation and calcium regulatory protein expression in right ventricular hypertrophy of the rat. Stessel, H., Brunner, F. Basic & clinical pharmacology & toxicology. (2004) [Pubmed]
  24. Adenoviral gene transfer of phospholamban in isolated rat cardiomyocytes. Rescue effects by concomitant gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Hajjar, R.J., Schmidt, U., Kang, J.X., Matsui, T., Rosenzweig, A. Circ. Res. (1997) [Pubmed]
  25. Modulation of protein phosphatase 2a by adenosine A1 receptors in cardiomyocytes: role for p38 MAPK. Liu, Q., Hofmann, P.A. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  26. Phosphorylation of phospholamban in the intact heart. A study on the physiological role of the Ca(2+)-calmodulin-dependent protein kinase system. Napolitano, R., Vittone, L., Mundiña, C., Chiappe de Cingolani, G., Mattiazzi, A. J. Mol. Cell. Cardiol. (1992) [Pubmed]
  27. Phenotype dictates the growth response of vascular smooth muscle cells to pulse pressure in vitro. Cappadona, C., Redmond, E.M., Theodorakis, N.G., McKillop, I.H., Hendrickson, R., Chhabra, A., Sitzmann, J.V., Cahill, P.A. Exp. Cell Res. (1999) [Pubmed]
  28. Increased cardiac workload by closure of the ductus arteriosus leads to hypertrophy and apoptosis rather than to hyperplasia in the late fetal period. van den Hoff, M.J., Deprez, R.H., Ruijter, J.M., de Boer, P.A., Tesink-Taekema, S., Buffing, A.A., Lamers, W.H., Moorman, A.F. Naunyn Schmiedebergs Arch. Pharmacol. (2004) [Pubmed]
  29. Adenovirus-based phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction: comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter. Eizema, K., Fechner, H., Bezstarosti, K., Schneider-Rasp, S., van der Laarse, A., Wang, H., Schultheiss, H.P., Poller, W.C., Lamers, J.M. Circulation (2000) [Pubmed]
  30. Comparable levels of Ca-ATPase inhibition by phospholamban in slow-twitch skeletal and cardiac sarcoplasmic reticulum. Ferrington, D.A., Yao, Q., Squier, T.C., Bigelow, D.J. Biochemistry (2002) [Pubmed]
WikiGenes - Universities