The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes.

Phospholipid hydroperoxides and phospholipid alcohols are two of the major forms of oxidatively modified phospholipids produced during oxidant stress and lipid peroxidation. The process of lipid peroxidation is known to affect the physiological function of membranes. We, therefore, investigated the effects of lipid peroxidation products on the molecular interactions in membranes. Our study was specifically focused on the effects of lipid peroxidation products on static membrane structure (molecular orientational order) and on the reorientational dynamics of the probe molecules in lipid bilayers. The study was done by performing angle-resolved fluorescence depolarization measurements (AFD) on the fluorescent probe diphenylhexatriene (DPH) and by performing angle-resolved electron spin resonance (A-ESR) measurements on cholestane ( CSL) nitroxide spin probes embedded in macroscopically oriented planar bilayers consisting of 2-10% 1-palmitoyl-2-(9/13-hydroperoxylinoleoyl)phosphatidylcholine (PLPC-OOH) or 1-palmitoyl-2-(9/13-hydroxylinoleoyl)phosphatidylcholine (PLPC-OH) in 1-palmitoyl-2-linoleoylphosphatidylcholine (PLPC) or dilinoleoylphosphatidylcholine (DLPC). Both probe molecules have rigid cylindrical geometries and report on the overall molecular order and dynamics. However, being more polar, the nitroxide spin probe CSL is preferentially located near the surface of the membrane, while the less polar fluorescent probe DPH reports preferentially near the central hydrophobic region of the lipid bilayers. The results show that the presence of relatively small amounts of oxidatively modified phospholipids within the PLPC or DLPC membranes causes pronounced structural effects as the molecular orientational order of the probe molecules is strongly decreased. In contrast, the effect on membrane reorientational dynamics is minimal.[1]

References

  1. Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes. Wratten, M.L., van Ginkel, G., van't Veld, A.A., Bekker, A., van Faassen, E.E., Sevanian, A. Biochemistry (1992) [Pubmed]
 
WikiGenes - Universities