The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Comparison of metabolism and toxicity to the structure of the anticancer agent sulofenur and related sulfonylureas.

The metabolic formation of p-chloroaniline from the oncolytic agent sulofenur [N-(5-indanesulfonyl)-N'-(4-chlorophenyl)urea, LY186641,] and from similar diaryl-substituted sulfonylureas, and its possible relevance to the compound's toxicity, was studied. In previous studies it was found that significant amounts of metabolites such as 2-amino-5-chlorophenyl sulfate (II), which is also a metabolite of p-chloroaniline, are formed from sulofenur in mice, rats, monkeys, and humans. The metabolism of N-(4-tolyl)-N'-(2-hydroxy-4-chlorophenyl)-urea (V) was studied, and V was not found to be an intermediate in the metabolic formation of II from the sulfonylurea N-(4-tolyl)-N'-(4-chlorophenyl)urea (LY181984, III). The amounts of this p-chloroaniline metabolite (II) formed in C3H mice from a series of diarylsulfonylureas were found to correlate with the compound's propensities to form methemoglobin, one notable toxicity of p-chloroaniline. This metabolism was also found to correlate with the structure of the arylsulfonyl moiety of the sulfonylurea. Other evidence supports the hypothesis that p-chloroaniline is directly formed by metabolism of sulfofenur and similar diarylsulfonylureas as well. Metabolic formation of p-chloroaniline thus appears to be a plausible explanation for the methemoglobinemia and anemia found to be dose-limiting toxicities of sulofenur in Phase I trials.[1]


  1. Comparison of metabolism and toxicity to the structure of the anticancer agent sulofenur and related sulfonylureas. Ehlhardt, W.J., Woodland, J.M., Worzalla, J.F., Bewley, J.R., Grindey, G.B., Todd, G.C., Toth, J.E., Howbert, J.J. Chem. Res. Toxicol. (1992) [Pubmed]
WikiGenes - Universities