The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Interactions between genetic polymorphism of cytochrome P450-1B1, sulfotransferase 1A1, catechol-o-methyltransferase and tobacco exposure in breast cancer risk.

Genetic polymorphisms of enzymes involved in the metabolism of xenobiotics and estrogens might play a role in breast carcinogenesis related to environmental exposures. In a case-only study on 282 women with breast cancer, we studied the interaction effects (ORi) between smoking habits and the gene polymorphisms of Cytochrome P450 1B1 (Val432Leu CYP1B1), Phenol-sulfotransferase 1A1 (Arg213His SULT1A1) and Catechol-O-methyltransferase (Val158Met COMT). The smokers carrying the Val CYP1B1 allele associated with a high hydroxylation activity had a higher risk of breast cancer than never smokers with the Leu/Leu genotype (ORi=2.32, 95%CI: 1.00-5.38). Also, the smokers carrying the His SULT1A1 allele associated with a low sulfation activity had a 2-fold excess risk compared to never smokers carrying Arg/Arg SULT1A1 common genotype (ORi= 2.55, 95%CI: 1.21-5.36). The His SULT1A1 allele increased the risk only in premenopausal patients. The Met COMT allele with a lower methylation activity than Val COMT did not modify the risk among smokers. The excess risk due to joint effect could result from a higher exposure to activated tobacco-compounds for women homo/heterozygous for the Val CYP1B1 allele. Also, a lower sulfation of the tobacco carcinogens among women with His SULT1A1 could increase exposure to genotoxic compounds. Alternatively, the Val CYP1B1 or His SULT1A1 allele with modified ability to metabolize estrogens could increase the level of genotoxic catechol estrogen (i.e., 4-hydroxy-estradiol) among smokers. Our study showed that gene polymorphisms of CYP1B1 and SULT1A1 induce an individual susceptibility to breast cancer among current smokers.[1]

References

 
WikiGenes - Universities