The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

DL-Catechin     2-(3,4- dihydroxyphenyl)chroman- 3,5,7-triol

Synonyms: SureCN19411, CHEMBL206452, BSPBio_000713, SureCN10001669, SureCN10033927, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CATECHIN

  • Concentrations of chitin, protein, and catechol increased substantially as dehydration and sclerotization progressed [1].
  • The absolute levels and relative ratios of 16 alpha-hydroxylated estrogens and 2-hydroxylated estrogens (catechol estrogens) in the body may have a role in the etiology of breast cancer, but studies so far have provided only conflicting results [2].
  • Papilloma multiplicity increased from subgroup A to subgroup C in the MNAN plus B. pilosa group but not in the MNAN plus catechol group [3].
  • Chemical cocarcinogenesis with the use of a subclone derived from Balb/3T3 cells with catechol as cocarcinogen [4].
  • These results support the view that catechol in cigarette smoke and B. pilosa as eaten in South Africa contribute to the etiology of human esophageal cancer [3].
 

Psychiatry related information on CATECHIN

  • Following the optimization of the paste composition, PPO-based carbon paste biosensors were prepared and presented excellent analytical properties toward catechol detection with a sensitivity of 4.7 A M(-1) cm(-2) and a response time lower than 20 s [5].
  • No association between functional catechol O-methyl transferase 1947A>G polymorphism and smoking initiation, persistent smoking or smoking cessation [6].
  • These observations help to explain individual differences in response to treatment with catechol drugs and may explain some variations in the function of human catecholamine neurotransmitters [7].
  • Quercetin and catechin are among the major flavonoids in plant foods and their intake has been associated to a risk reduction in several degenerative diseases [8].
  • We have examined the ability of a novel catechol monoester of L-DOPA, NB-355 [L-3-(3-hydroxy-4-pivaloxyloyphenyl)alanine], to stimulate locomotor activity and induce dyskinesias in MPTP-treated primates [9].
 

High impact information on CATECHIN

 

Chemical compound and disease context of CATECHIN

 

Biological context of CATECHIN

  • The indirect formation of the catechol (dopa) from the phenol (tyrosine) leads to unusual enzyme kinetics [19].
  • CYP3A metabolism generates epipodophyllotoxin catechol and quinone metabolites, which could damage DNA [20].
  • The pKT530 plasmid also carries xylS (a gene whose product has been postulated to regulate expression of the lower pathway genes) and the control sequences of the pathway that interact with this product, because catechol 2,3-oxygenase synthesis is specifically induced by m-toluate in both P. putida and E. coli [21].
  • Moreover, the active site of catechol oxidase has been found to be structurally conserved with the oxygen-binding site of a molluscan hemocyanin [22].
  • Hydroquinone (50 microM), catechol (500 microM), or CSC (50 micrograms/ml) induced an initial cytosol-to-membrane translocation of PKC in LL/2 lung carcinoma cells, followed by a later down-regulation of the enzyme [14].
 

Anatomical context of CATECHIN

 

Associations of CATECHIN with other chemical compounds

 

Gene context of CATECHIN

 

Analytical, diagnostic and therapeutic context of CATECHIN

References

  1. Aromatic cross-links in insect cuticle: detection by solid-state 13C and 15N NMR. Schaefer, J., Kramer, K.J., Garbow, J.R., Jacob, G.S., Stejskal, E.O., Hopkins, T.L., Speirs, R.D. Science (1987) [Pubmed]
  2. Estrogen metabolism and excretion in Oriental and Caucasian women. Adlercreutz, H., Gorbach, S.L., Goldin, B.R., Woods, M.N., Dwyer, J.T., Hämäläinen, E. J. Natl. Cancer Inst. (1994) [Pubmed]
  3. Test of catechol, tannic acid, Bidens pilosa, croton oil, and phorbol for cocarcinogenesis of esophageal tumors induced in rats by methyl-n-amylnitrosamine. Mirvish, S.S., Salmasi, S., Lawson, T.A., Pour, P., Sutherland, D. J. Natl. Cancer Inst. (1985) [Pubmed]
  4. Chemical cocarcinogenesis with the use of a subclone derived from Balb/3T3 cells with catechol as cocarcinogen. Atchison, M., Chu, C., Kakunaga, T., Van Duuren, B.L. J. Natl. Cancer Inst. (1982) [Pubmed]
  5. Composite carbon paste biosensor for phenolic derivatives based on in situ electrogenerated polypyrrole binder. Mailley, P., Cummings, E.A., Mailley, S.C., Eggins, B.R., McAdams, E., Cosnier, S. Anal. Chem. (2003) [Pubmed]
  6. No association between functional catechol O-methyl transferase 1947A>G polymorphism and smoking initiation, persistent smoking or smoking cessation. David, S.P., Johnstone, E., Griffiths, S.E., Murphy, M., Yudkin, P., Mant, D., Walton, R. Pharmacogenetics (2002) [Pubmed]
  7. Biochemical genetics of catecholamines in humans. Weinshilboum, R.M. Mayo Clin. Proc. (1983) [Pubmed]
  8. Co-administration of quercetin and catechin in rats alters their absorption but not their metabolism. Silberberg, M., Morand, C., Manach, C., Scalbert, A., Remesy, C. Life Sci. (2005) [Pubmed]
  9. NB-355: a novel prodrug for L-DOPA with reduced risk for peak-dose dyskinesias in MPTP-treated squirrel monkeys. Tye, S.J., Rupniak, N.M., Naruse, T., Miyaji, M., Iversen, S.D. Clinical neuropharmacology. (1989) [Pubmed]
  10. Dopamine covalently modifies and functionally inactivates parkin. LaVoie, M.J., Ostaszewski, B.L., Weihofen, A., Schlossmacher, M.G., Selkoe, D.J. Nat. Med. (2005) [Pubmed]
  11. Crystal structure of catechol O-methyltransferase. Vidgren, J., Svensson, L.A., Liljas, A. Nature (1994) [Pubmed]
  12. Catechol estrogens: presence in brain and endocrine tissues. Paul, S.M., Axelrod, J. Science (1977) [Pubmed]
  13. Changes in levels of urinary estrogen metabolites after oral indole-3-carbinol treatment in humans. Michnovicz, J.J., Adlercreutz, H., Bradlow, H.L. J. Natl. Cancer Inst. (1997) [Pubmed]
  14. Tobacco smoke tumor promoters, catechol and hydroquinone, induce oxidative regulation of protein kinase C and influence invasion and metastasis of lung carcinoma cells. Gopalakrishna, R., Chen, Z.H., Gundimeda, U. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  15. Comprehensive assessment of genetic variation of catechol-o-methyltransferase and breast cancer risk. Gaudet, M.M., Chanock, S., Lissowska, J., Berndt, S.I., Peplonska, B., Brinton, L.A., Welch, R., Yeager, M., Bardin-Mikolajczak, A., Garcia-Closas, M. Cancer Res. (2006) [Pubmed]
  16. Modification by catechol and resorcinol of upper digestive tract carcinogenesis in rats treated with methyl-N-amylnitrosamine. Yamaguchi, S., Hirose, M., Fukushima, S., Hasegawa, R., Ito, N. Cancer Res. (1989) [Pubmed]
  17. Rapid reaction studies on the oxygenation reactions of catechol dioxygenase. Walsh, T.A., Ballou, D.P., Mayer, R., Que, L. J. Biol. Chem. (1983) [Pubmed]
  18. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. Fujiwara, M., Golovleva, L.A., Saeki, Y., Nozaki, M., Hayaishi, O. J. Biol. Chem. (1975) [Pubmed]
  19. Tyrosinase autoactivation and the chemistry of ortho-quinone amines. Land, E.J., Ramsden, C.A., Riley, P.A. Acc. Chem. Res. (2003) [Pubmed]
  20. Association of CYP3A4 genotype with treatment-related leukemia. Felix, C.A., Walker, A.H., Lange, B.J., Williams, T.M., Winick, N.J., Cheung, N.K., Lovett, B.D., Nowell, P.C., Blair, I.A., Rebbeck, T.R. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  21. Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Franklin, F.C., Bagdasarian, M., Bagdasarian, M.M., Timmis, K.N. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  22. Catechol oxidase - structure and activity. Eicken, C., Krebs, B., Sacchettini, J.C. Curr. Opin. Struct. Biol. (1999) [Pubmed]
  23. Metabolism of catechol estrogens by erythrocyte catechol-O methyltransferase. Bates, G.W., Jackson, E. Science (1981) [Pubmed]
  24. Antioxidants--carcinogenic and chemopreventive properties. Ito, N., Hirose, M. Adv. Cancer Res. (1989) [Pubmed]
  25. Homology of a vesicular amine transporter to a gene conferring resistance to 1-methyl-4-phenylpyridinium. Stern-Bach, Y., Keen, J.N., Bejerano, M., Steiner-Mordoch, S., Wallach, M., Findlay, J.B., Schuldiner, S. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  26. Influence of alpha-naphthoflavone on the metabolism and binding of ethinylestradiol in male Syrian hamster liver microsomes: possible role in hepatocarcinogenesis. Haaf, H., Metzler, M., Li, J.J. Cancer Res. (1988) [Pubmed]
  27. Correlation of aromatic hydroxylation of 11 beta-substituted estrogens with morphological transformation in vitro but not with in vivo tumor induction by these hormones. Liehr, J.G., Purdy, R.H., Baran, J.S., Nutting, E.F., Colton, F., Randerath, E., Randerath, K. Cancer Res. (1987) [Pubmed]
  28. 4-Hydroxylation of estradiol by human uterine myometrium and myoma microsomes: implications for the mechanism of uterine tumorigenesis. Liehr, J.G., Ricci, M.J., Jefcoate, C.R., Hannigan, E.V., Hokanson, J.A., Zhu, B.T. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  29. Near-precise interchromosomal recombination and functional DNA topoisomerase II cleavage sites at MLL and AF-4 genomic breakpoints in treatment-related acute lymphoblastic leukemia with t(4;11) translocation. Lovett, B.D., Lo Nigro, L., Rappaport, E.F., Blair, I.A., Osheroff, N., Zheng, N., Megonigal, M.D., Williams, W.R., Nowell, P.C., Felix, C.A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  30. Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Kishi, S., Yang, W., Boureau, B., Morand, S., Das, S., Chen, P., Cook, E.H., Rosner, G.L., Schuetz, E., Pui, C.H., Relling, M.V. Blood (2004) [Pubmed]
  31. An association between the allele coding for a low activity variant of catechol-O-methyltransferase and the risk for breast cancer. Lavigne, J.A., Helzlsouer, K.J., Huang, H.Y., Strickland, P.T., Bell, D.A., Selmin, O., Watson, M.A., Hoffman, S., Comstock, G.W., Yager, J.D. Cancer Res. (1997) [Pubmed]
  32. Methoxyestrogens exert feedback inhibition on cytochrome P450 1A1 and 1B1. Dawling, S., Roodi, N., Parl, F.F. Cancer Res. (2003) [Pubmed]
  33. Complete nucleotide sequence of the metapyrocatechase gene on the TOI plasmid of Pseudomonas putida mt-2. Nakai, C., Kagamiyama, H., Nozaki, M., Nakazawa, T., Inouye, S., Ebina, Y., Nakazawa, A. J. Biol. Chem. (1983) [Pubmed]
  34. Sister chromatid exchange induction in human lymphocytes exposed to benzene and its metabolites in vitro. Erexson, G.L., Wilmer, J.L., Kligerman, A.D. Cancer Res. (1985) [Pubmed]
  35. Identification of the site of sulfation of the fourth component of human complement. Hortin, G., Sims, H., Strauss, A.W. J. Biol. Chem. (1986) [Pubmed]
  36. Effects of epicatechin gallate on wound healing and scar formation in a full thickness incisional wound healing model in rats. Kapoor, M., Howard, R., Hall, I., Appleton, I. Am. J. Pathol. (2004) [Pubmed]
 
WikiGenes - Universities