The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity.

We conducted an analysis of the topology of AtNHX1, an Arabidopsis thaliana vacuolar Na+/H+ antiporter. Several hydrophilic regions of the antiporter were tagged with a hemagglutinin epitope, and protease protection assays were conducted to determine the membrane topology of the antiporter by using yeast as a heterologous expression system. The overall structure of AtNHX1 is distinct from the human Na+/H+ antiporter NHE1 or any known Na+/H+ antiporter. It is comprised of nine transmembrane domains and a hydrophilic C-terminal domain. Three hydrophobic regions do not appear to span the tonoplast membrane, yet appear to be membrane associated. Our results also indicate that, whereas the N terminus of AtNHX1 is facing the cytosol, almost the entire C-terminal hydrophilic region resides in the vacuolar lumen. Deletion of the hydrophilic C terminus resulted in a dramatic increase in the relative rate of Na+/H+ transport. The ratio of Na+/K+ transport was twice that of the unmodified AtNHX1. This altered ratio resulted from a relatively small decrease in K+/H+ transport with a large increase in Na+/H+ transport. The vacuolar localization of the C terminus of the AtNHX1, taken together with the regulation of the antiporter selectivity by its C terminus, demonstrates the existence of luminal vacuolar regulatory mechanisms of the antiporter activity.[1]


WikiGenes - Universities