The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Differential transcription factor occupancy but evolutionarily conserved chromatin features at the human and mouse M-CSF (CSF-1) receptor loci.

The c-FMS gene encodes the macrophage colony-stimulating factor receptor (M-CSFR or CSF1-R), which is a tyrosine kinase growth factor receptor essential for macrophage development. We have previously characterized the chromatin features of the mouse gene; however, very little is known about chromatin structure and function of the human c-FMS locus. Here we present a side-by-side comparison of the chromatin structure, histone modification, transcription factor occupancy and cofactor recruitment of the human and the mouse c-FMS loci. We show that, similar to the mouse gene, the human c-FMS gene possesses a promoter and an intronic enhancer element (c-fms intronic regulatory element or FIRE). Both elements are evolutionarily conserved and specifically active in macrophages. However, we demonstrate by in vivo footprinting that both murine and human c-FMS cis-regulatory elements are recognised by an overlapping, but non-identical, set of transcription factors. Despite these differences, chromatin immunoprecipitation experiments show highly similar patterns of histone H3 modification and a similar distribution of chromatin modifying and remodelling activities at individual cis-regulatory elements and across the c-FMS locus. Our experiments support the hypothesis that the same regulatory principles operate at both genes via conserved cores of transcription factor binding sites.[1]

References

 
WikiGenes - Universities