The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Csf1  -  colony stimulating factor 1 (macrophage)

Mus musculus

Synonyms: C87615, CSF-1, Csfm, M-CSF, MCSF, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Csf1


Psychiatry related information on Csf1


High impact information on Csf1


Chemical compound and disease context of Csf1


Biological context of Csf1


Anatomical context of Csf1


Associations of Csf1 with chemical compounds


Physical interactions of Csf1

  • Specific structural proteins associated with the separate CSF-1R multimeric complexes upon CSF-1 stimulation and the presence of the distinct pools of the CSF-1R were dependent on the integrity of the microtubular network [27].
  • To test this hypothesis, murine bone marrow macrophages were cultured under conditions that down-regulate M-CSFr and the effect of IL-4 on the reexpression of the receptor measured by binding of 125I-labeled M-CSF to the cells [28].
  • Our novel results are consistent with the notion that specific receptors for epo exist on the cell surface of PEM and that binding of epo sets in motion a series of cellular events resulting in the internalization of CSF-1 receptors [29].
  • CSF-1 induced binding of Elk-1 to the fos gene serum response element appears to be part of the molecular mechanism by which this occurs [30].
  • They also show a complete disappearance of the colony-stimulating factor 1 (CSF-1) receptor that occurs shortly after the binding of TNF-alpha by the trophectoderm [31].

Enzymatic interactions of Csf1


Regulatory relationships of Csf1


Other interactions of Csf1

  • However, at 21 degrees C or 37 degrees C, Multi-CSF inhibits binding of the other three CSFs and GM-CSF inhibits binding of G-CSF and M-CSF [41].
  • Stimulation of arrested cells by CSF-1 resulted in acute, transient elevation in c-fos and subsequently in c-myc mRNA levels [18].
  • Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor [24].
  • The failure of PU.1 -/- progenitors to respond to M-CSF is due to lack of c-fms gene transcription [37].
  • CSF-1 stimulation of NOD marrow induced Møs to differentiate to the point that they secreted levels of tumor necrosis factor alpha equivalent to that of controls [25].

Analytical, diagnostic and therapeutic context of Csf1

  • The dissection of the system has been greatly facilitated by discovery of the osteopetrotic op/op mouse, which has a spontaneous knockout of the gene for CSF-1 and possesses generalized but differential deficiency of various local subpopulations of M phi [10].
  • CSF-1 mRNA, predominantly the 2.3-kilobase (kb) form, was first detected by in situ hybridization in uterine epithelium prior to implantation on day 3 and subsequently increased, reaching a peak at days 14-15 [19].
  • X-irradiation to doses that decreased CSF-1 to 40% of control levels (greater than 5,000 rad) resulted in a 30-fold increase in growth of FDCP-1 or bg/bg cl 1 cells in liquid co-culture or agar culture overlay with no detectable growth of 32D cl 3 [42].
  • Southern blot analysis of tumor DNA from six of six of these tumors failed to reveal any rearrangements in the genes for CSF-1 or the CSF-1R [43].
  • Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice [44].


  1. Increased Myeloid Cell Responses to M-CSF and RANKL Cause Bone Loss and Inflammation in SH3BP2 "Cherubism" Mice. Ueki, Y., Lin, C.Y., Senoo, M., Ebihara, T., Agata, N., Onji, M., Saheki, Y., Kawai, T., Mukherjee, P.M., Reichenberger, E., Olsen, B.R. Cell (2007) [Pubmed]
  2. M-CSF mediates TNF-induced inflammatory osteolysis. Kitaura, H., Zhou, P., Kim, H.J., Novack, D.V., Ross, F.P., Teitelbaum, S.L. J. Clin. Invest. (2005) [Pubmed]
  3. FLT3 ligand can substitute for macrophage colony-stimulating factor in support of osteoclast differentiation and function. Lean, J.M., Fuller, K., Chambers, T.J. Blood (2001) [Pubmed]
  4. Mice lacking both macrophage- and granulocyte-macrophage colony-stimulating factor have macrophages and coexistent osteopetrosis and severe lung disease. Lieschke, G.J., Stanley, E., Grail, D., Hodgson, G., Sinickas, V., Gall, J.A., Sinclair, R.A., Dunn, A.R. Blood (1994) [Pubmed]
  5. Inhibition of interleukin 3 and colony-stimulating factor 1-stimulated marrow cell proliferation by pertussis toxin. He, Y.X., Hewlett, E., Temeles, D., Quesenberry, P. Blood (1988) [Pubmed]
  6. Cytokines modulate the inflammatory response and change permissiveness to neuronal adhesion in injured mammalian central nervous system. Lotan, M., Solomon, A., Ben-Bassat, S., Schwartz, M. Exp. Neurol. (1994) [Pubmed]
  7. Macrophage-colony stimulating factor (M-CSF) in the cerebrospinal fluid. Gallo, P., Pagni, S., Giometto, B., Piccinno, M.G., Bozza, F., Argentiero, V., Tavolato, B. J. Neuroimmunol. (1990) [Pubmed]
  8. Macrophage colony stimulating factor promotes phagocytosis by murine microglia. Mitrasinovic, O.M., Vincent, V.A., Simsek, D., Murphy, G.M. Neurosci. Lett. (2003) [Pubmed]
  9. Reduction of osteoclasts in a critical embryonic period is essential for inhibition of mouse tooth eruption. Yoshino, M., Yamazaki, H., Yoshida, H., Niida, S., Nishikawa, S., Ryoke, K., Kunisada, T., Hayashi, S. J. Bone Miner. Res. (2003) [Pubmed]
  10. Cytokine regulation of the macrophage (M phi) system studied using the colony stimulating factor-1-deficient op/op mouse. Wiktor-Jedrzejczak, W., Gordon, S. Physiol. Rev. (1996) [Pubmed]
  11. Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Lagasse, E., Weissman, I.L. Cell (1997) [Pubmed]
  12. Role of macrophages and colony-stimulating factor-1 in murine antiglomerular basement membrane glomerulonephritis. Neugarten, J., Feith, G.W., Assmann, K.J., Shan, Z., Stanley, E.R., Schlondorff, D. J. Am. Soc. Nephrol. (1995) [Pubmed]
  13. Colony-stimulating factor 1-dependent resident macrophages play a regulatory role in fighting Escherichia coli fecal peritonitis. Wiktor-Jedrzejczak, W., Dzwigala, B., Szperl, M., Maruszynski, M., Urbanowska, E., Szwech, P. Infect. Immun. (1996) [Pubmed]
  14. Macrophage colony-stimulating factor restores bone resorption in op/op bone in vitro in conjunction with parathyroid hormone or 1,25-dihydroxyvitamin D3. Morohashi, T., Corboz, V.A., Fleisch, H., Cecchini, M.G., Felix, R. J. Bone Miner. Res. (1994) [Pubmed]
  15. Macrophage phenotype in mice deficient in both macrophage-colony-stimulating factor (op) and apolipoprotein E. de Villiers, W.J., Smith, J.D., Miyata, M., Dansky, H.M., Darley, E., Gordon, S. Arterioscler. Thromb. Vasc. Biol. (1998) [Pubmed]
  16. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. Cenci, S., Weitzmann, M.N., Roggia, C., Namba, N., Novack, D., Woodring, J., Pacifici, R. J. Clin. Invest. (2000) [Pubmed]
  17. Comparative effects in vivo of recombinant murine interleukin 3, natural murine colony-stimulating factor-1, and recombinant murine granulocyte-macrophage colony-stimulating factor on myelopoiesis in mice. Broxmeyer, H.E., Williams, D.E., Cooper, S., Shadduck, R.K., Gillis, S., Waheed, A., Urdal, D.L., Bicknell, D.C. J. Clin. Invest. (1987) [Pubmed]
  18. CSF-1-induced gene expression in macrophages: dissociation from the mitogenic response. Orlofsky, A., Stanley, E.R. EMBO J. (1987) [Pubmed]
  19. Temporal expression and location of colony-stimulating factor 1 (CSF-1) and its receptor in the female reproductive tract are consistent with CSF-1-regulated placental development. Arceci, R.J., Shanahan, F., Stanley, E.R., Pollard, J.W. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  20. VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice. Niida, S., Kondo, T., Hiratsuka, S., Hayashi, S., Amizuka, N., Noda, T., Ikeda, K., Shibuya, M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  21. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. Kobayashi, K., Takahashi, N., Jimi, E., Udagawa, N., Takami, M., Kotake, S., Nakagawa, N., Kinosaki, M., Yamaguchi, K., Shima, N., Yasuda, H., Morinaga, T., Higashio, K., Martin, T.J., Suda, T. J. Exp. Med. (2000) [Pubmed]
  22. Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. Kodama, H., Nose, M., Niida, S., Yamasaki, A. J. Exp. Med. (1991) [Pubmed]
  23. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin G. Evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase. Satriano, J.A., Shuldiner, M., Hora, K., Xing, Y., Shan, Z., Schlondorff, D. J. Clin. Invest. (1993) [Pubmed]
  24. Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor. Courtneidge, S.A., Dhand, R., Pilat, D., Twamley, G.M., Waterfield, M.D., Roussel, M.F. EMBO J. (1993) [Pubmed]
  25. Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: defective regulation of cytokine receptors and protein kinase C. Serreze, D.V., Gaedeke, J.W., Leiter, E.H. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  26. Ligand-induced tyrosine kinase activity of the colony-stimulating factor 1 receptor in a murine macrophage cell line. Downing, J.R., Rettenmier, C.W., Sherr, C.J. Mol. Cell. Biol. (1988) [Pubmed]
  27. Separation and characterization of the activated pool of colony-stimulating factor 1 receptor forming distinct multimeric complexes with signalling molecules in macrophages. Kanagasundaram, V., Jaworowski, A., Byrne, R., Hamilton, J.A. Mol. Cell. Biol. (1999) [Pubmed]
  28. Interleukin-4 enhances murine bone marrow macrophage M-CSF receptor expression by a posttranscriptional mechanism. Gibbons, R., Ross, F.P., Perkins, S.L., Lacey, D.L., Martin, J., Ebner, R., Teitelbaum, S.L., Kahn, A.J. Lymphokine Cytokine Res. (1994) [Pubmed]
  29. Erythropoietin causes down regulation of colony-stimulating factor (CSF-1) receptors on peritoneal exudate macrophages of the mouse. Van Zant, G., Chen, B.D. J. Cell Biol. (1983) [Pubmed]
  30. CSF-1 induces fos gene transcription and activates the transcription factor Elk-1 in mature osteoclasts. Yao, G.Q., Itokawa, T., Paliwal, I., Insogna, K. Calcif. Tissue Int. (2005) [Pubmed]
  31. Tumour necrosis factor alpha binding to human and mouse trophoblast. Ben-Yair, E., Less, A., Lev, S., Ben-Yehoshua, L., Tartakovsky, B. Cytokine (1997) [Pubmed]
  32. Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1. Chen, H.E., Chang, S., Trub, T., Neel, B.G. Mol. Cell. Biol. (1996) [Pubmed]
  33. Association between phosphatidylinositol-3 kinase, Cbl and other tyrosine phosphorylated proteins in colony-stimulating factor-1-stimulated macrophages. Kanagasundaram, V., Jaworowski, A., Hamilton, J.A. Biochem. J. (1996) [Pubmed]
  34. Macrophage colony-stimulating factor-induced tyrosine phosphorylation of c-fms proteins expressed in FDC-P1 and BALB/c 3T3 cells. Tapley, P., Kazlauskas, A., Cooper, J.A., Rohrschneider, L.R. Mol. Cell. Biol. (1990) [Pubmed]
  35. 1,25-Dihydroxyvitamin D3 and macrophage colony-stimulating factor-1 synergistically phosphorylate talin. Meenakshi, T., Ross, F.P., Martin, J., Teitelbaum, S.L. J. Cell. Biochem. (1993) [Pubmed]
  36. Regulation of cytosolic phospholipase A2 phosphorylation and eicosanoid production by colony-stimulating factor 1. Xu, X.X., Rock, C.O., Qiu, Z.H., Leslie, C.C., Jackowski, S. J. Biol. Chem. (1994) [Pubmed]
  37. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. DeKoter, R.P., Walsh, J.C., Singh, H. EMBO J. (1998) [Pubmed]
  38. Colony-stimulating factor 1 expression is down-regulated during the adipocyte differentiation of H-1/A marrow stromal cells and induced by cachectin/tumor necrosis factor. Umezawa, A., Tachibana, K., Harigaya, K., Kusakari, S., Kato, S., Watanabe, Y., Takano, T. Mol. Cell. Biol. (1991) [Pubmed]
  39. Phosphatidylcholine hydrolysis and c-myc expression are in collaborating mitogenic pathways activated by colony-stimulating factor 1. Xu, X.X., Tessner, T.G., Rock, C.O., Jackowski, S. Mol. Cell. Biol. (1993) [Pubmed]
  40. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. Jimi, E., Akiyama, S., Tsurukai, T., Okahashi, N., Kobayashi, K., Udagawa, N., Nishihara, T., Takahashi, N., Suda, T. J. Immunol. (1999) [Pubmed]
  41. Hierarchical down-modulation of hemopoietic growth factor receptors. Walker, F., Nicola, N.A., Metcalf, D., Burgess, A.W. Cell (1985) [Pubmed]
  42. Induction of growth alterations in factor-dependent hematopoietic progenitor cell lines by cocultivation with irradiated bone marrow stromal cell lines. Naparstek, E., Pierce, J., Metcalf, D., Shadduck, R., Ihle, J., Leder, A., Sakakeeny, M.A., Wagner, K., Falco, J., FitzGerald, T.J. Blood (1986) [Pubmed]
  43. Increased circulating colony-stimulating factor-1 (CSF-1) in SJL/J mice with radiation-induced acute myeloid leukemia (AML) is associated with autocrine regulation of AML cells by CSF-1. Haran-Ghera, N., Krautghamer, R., Lapidot, T., Peled, A., Dominguez, M.G., Stanley, E.R. Blood (1997) [Pubmed]
  44. Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Aharinejad, S., Abraham, D., Paulus, P., Abri, H., Hofmann, M., Grossschmidt, K., Schäfer, R., Stanley, E.R., Hofbauer, R. Cancer Res. (2002) [Pubmed]
WikiGenes - Universities