The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Identification of a novel class of endoperoxides from arachidonate autoxidation.

Free radical-initiated lipid autoxidation in low density lipoprotein (LDL) has been implicated in the pathogenesis of atherosclerosis. Oxidation of the lipid components of LDL leads to a complex mixture of hydroperoxides, bicyclic endoperoxides, monocyclic peroxides, and serial cyclic peroxides. The oxidation compounds and/or their decomposition products can modify protein components, which may lead to various diseases. A novel class of peroxides (termed dioxolane-isoprostanes) having a bicyclic endoperoxide moiety characteristic of the isoprostanes and a dioxolane peroxide functionality in the same molecule was identified in the product mixture formed from in vitro autoxidation of cholesteryl arachidonate. The same products are also detected in in vitro oxidized LDL. Various mass spectrometric techniques have been applied to characterize these new peroxides. The structure of these compounds has also been confirmed by independent synthesis. We reason, based on the free radical mechanism of the transformation, that only the 12- and 8-peroxyl radicals (those leading to 12-HPETE and 8-HPETE) of arachidonate can form these new peroxides. We also suggest that the formation of these peroxides provides a rationale to explain the fact that 5- and 15-series isoprostanes are formed in preference to 8- and 12-series. Furthermore, series of other isoprostanes, such as dioxolane A(2), D(2), E(2), etc., can be derived from the dioxolane-isoprostane peroxides. These findings offer further insights into the oxidation products of arachidonate and the opportunity to study their potential biological relevance.[1]


  1. Identification of a novel class of endoperoxides from arachidonate autoxidation. Yin, H., Morrow, J.D., Porter, N.A. J. Biol. Chem. (2004) [Pubmed]
WikiGenes - Universities