The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of p38 mitogen- activated protein kinase enhances adrenergic- stimulated arylalkylamine N-acetyltransferase activity in rat pinealocytes.

We have previously shown that inhibition of p38(MAPK) increases adrenergic-stimulated p42/44(MAPK) activation in rat pinealocytes. In this study we investigated whether p38(MAPK) played a role in the adrenergic regulation of arylalkylamine-N-acetyltransferase (AA-NAT) induction and melatonin (MT) synthesis. Treatment of pinealocytes with norepinephrine (NE) caused a time-dependent increase in the levels of AA-NAT mRNA, AA-NAT protein, and enzymatic activity as well as MT production. Cotreatment with SB202190, a selective p38(MAPK) inhibitor, although having no effect on AA-NAT activity or protein level 3 h after NE treatment, caused a sustained increase in AA-NAT activity and protein level after 6 h of NE treatment. The increases in NE-stimulated AA-NAT activity and protein level by SB202190 occurred in the absence of an increase in AA-NAT mRNA. Similar results were obtained when AA-NAT was induced by (Bu)(2)cAMP or when SB203580 was used to inhibit p38(MAPK). In comparison, SB202474, the inactive analog, had no effect on NE or (Bu)(2)cAMP-stimulated AA-NAT activity or protein level. SB202190 also increased cumulative NE-stimulated MT production, provided that the medium was supplemented with 5-methoxytryptamine. p38(MAPK) inhibitors had no effect on hydroxyindole-O-methyltransferase activity. These results show that inhibition of p38(MAPK), although having no effect on cAMP-mediated AA-NAT transcription, appears to increase AA-NAT activity either by increasing translation or by reducing degradation of the AA-NAT protein. The lack of effect on NE-stimulated MT accumulation by p38(MAPK) inhibitors in the absence of 5-methoxytryptamine could be secondary to a lack of substrate, or alternatively, hydroxyindole-O-methyltransferase may become limiting.[1]

References

 
WikiGenes - Universities