CD95-tyrosine nitration inhibits hyperosmotic and CD95 ligand-induced CD95 activation in rat hepatocytes.
Epidermal growth factor receptor-dependent CD95-tyrosine phosphorylation was recently identified as an early step in apoptosis induction via the CD95 system (Reinehr, R., Schliess, F., and Häussinger, D. (2003) FASEB J. 17, 731-733). The effect of peroxynitrite (ONOO(-)) on modulation of the hyperosmotic and CD95 ligand (CD95L)-induced CD95 activation process was studied. Pretreatment of hepatocytes with ONOO(-) inhibited CD95L- and hyperosmolarity-induced CD95 membrane trafficking and formation of the death-inducing signaling complex, but not epidermal growth factor receptor activation and its association with CD95. Under these conditions, however, no tyrosine phosphorylation of CD95 occurred; instead, CD95 was tyrosine-nitrated. When ONOO(-) was added after induction of CD95-tyrosine phosphorylation by CD95L or hyperosmolarity, tyrosine nitration of CD95 was largely prevented and death-inducing signaling complex formation occurred. CD95-tyrosine nitration abolished the hyperosmotic sensitization of hepatocytes toward CD95L-induced apoptosis. Additionally, in CD95-yellow fluorescent protein-transfected Huh7-hepatoma cells, ONOO(-) induced CD95 Tyr nitration and prevented CD95L- induced Tyr phosphorylation and apoptosis. Tyrosine-nitrated CD95 was also found in rat livers derived from an in vivo model of endotoxinemia. The data suggest that CD95-tyrosine nitration prevents CD95 activation by inhibiting CD95-tyrosine phosphorylation. Apparently, CD95-tyrosine phosphorylation and nitration are mutually exclusive. The data identify critical tyrosine residues of CD95 as another target of the anti-apoptotic action of NO.[1]References
- CD95-tyrosine nitration inhibits hyperosmotic and CD95 ligand-induced CD95 activation in rat hepatocytes. Reinehr, R., Görg, B., Höngen, A., Häussinger, D. J. Biol. Chem. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg