The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Heterologous expression of Zygosaccharomyces rouxii glycerol 3-phosphate dehydrogenase gene (ZrGPD1) and glycerol dehydrogenase gene (ZrGCY1) in Saccharomyces cerevisiae.

We examined the effects of heterologous expression of the open reading frames (ORF) of two genes on salt tolerance and glycerol production in a Saccharomyces cerevisiae strain deficient in glycerol synthesis (gpd1Deltagpd2Delta). When the ORF of the Zygosaccharomyces rouxii glycerol 3-phosphate dehydrogenase gene (ZrGPD1) was expressed under the control of the GAL10 promoter, salt tolerance and glycerol production increased; when the ORF of the glycerol dehydrogenase gene (ZrGCY1) was expressed under the control of the GAL1 promoter, no such changes were observed. Zrgcy1p had a weak effect on glycerol production. These results suggest that Zrgpd1p is the primary enzyme involved in Z. rouxii glycerol production, following a mechanism similar to that of S. cerevisiae ( Gpd1p). When the ORFs of the S. cerevisiae glycerol 3-phosphatase gene (GPP2) and ZrGPD1 were simultaneously expressed, glycerol production increased, compared with that in yeast expressing only ZrGPD1.[1]

References

 
WikiGenes - Universities