The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Acid-base characteristics of bromophenol blue-citrate buffer systems in the amorphous state.

In this study, we have examined the acid-base characteristics of various citrate buffer systems alone and in the presence of the pH indicator dye, bromophenol blue, in aqueous solution, and after lyophilization to produce amorphous material. Fourier transform Raman and solid-state nuclear magnetic resonance spectroscopy have been used to monitor the ratio of ionized to un-ionized citric acid under various conditions, as a function of initial pH in the range of 2.65-4.28. Ultraviolet-visible spectrophotometry was used to probe the extent of proton transfer of bromophenol blue in the citrate buffer systems in solution and the amorphous state. Spectroscopic studies indicated greater ionization of citric acid and bromophenol blue in solution and the solid state with increasing initial solution pH, as expected. Fourier transform Raman measurements indicated the same ratio of ionized to un-ionized citrate species in solution, frozen solution, and the amorphous state. It is shown that the ratio of species at any particular initial pH is primarily determined by the amount of sodium ion present so as to maintain electroneutrality and not necessarily to the fact that pH and pK(a) remain unchanged during freezing and freeze drying. Indeed, for bromophenol blue, the relative ultraviolet-visible intensities for ionized and un-ionized species in the amorphous sample were different from those in solution indicating that the extent of protonation of bromophenol blue was significantly lower in the solid samples. It is concluded that under certain conditions there can be significant differences in the apparent hydrogen activity of molecules in amorphous systems.[1]


  1. Acid-base characteristics of bromophenol blue-citrate buffer systems in the amorphous state. Li, J., Chatterjee, K., Medek, A., Shalaev, E., Zografi, G. Journal of pharmaceutical sciences. (2004) [Pubmed]
WikiGenes - Universities