The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Correlation between UDP-glucuronosyltransferase genotypes and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone glucuronidation phenotype in human liver microsomes.

The nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, is one of the most potent and abundant procarcinogens found in tobacco and tobacco smoke, and glucuronidation of its major metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), is an important mechanism for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone detoxification. Substantial interindividual variability in urinary NNAL glucuronide formation has been observed in smokers and tobacco chewers. To determine whether genetic variations may play a role in this interindividual variability, NNAL-glucuronidating activities were analyzed in 78 human liver microsomal specimens and compared with the prevalence of missense polymorphisms in the two major NNAL-glucuronidating enzymes UGT1A4 and UGT2B7. In vitro assays using liver microsomal specimens from individual subjects demonstrated a 70- and 50-fold variability in NNAL-N-Gluc and NNAL-O-Gluc formation, respectively, and a 20-fold variability in the ratio of NNAL-N-Gluc:NNAL-O-Gluc formation. Microsomes from subjects with a homozygous polymorphic UGT1A4(24Thr)/UGT1A4(24Thr) genotype exhibited a significantly higher (P < 0.05) level of NNAL-N-Gluc activity compared with microsomes from subjects with the wild-type UGT1A4(24Pro)/UGT1A4(24Pro) genotype, and a significantly higher (P < 0.05) number of subjects with liver microsomes having high NNAL-N-Gluc formation activity contained the UGT1A4(24Thr)/UGT1A4(24Thr) genotype. Microsomes from subjects with the homozygous polymorphic UGT2B7(268Tyr)/UGT2B7(268Tyr) genotype exhibited a significantly lower level (P < 0.025) of NNAL-O-Gluc activity when compared with microsomes from subjects with the wild-type UGT2B7(268His)/UGT2B7(268His) genotype, and a significantly (P < 0.05) higher number of subjects with liver microsomes having low NNAL-O-Gluc formation activity contained the UGT2B7(268Tyr)/UGT2B7(268Tyr) genotype. These data suggest that the UGT1A4 codon 24 and UGT2B7 codon 268 polymorphisms may be associated with altered rates glucuronidation and detoxification of NNAL in vivo.[1]

References

 
WikiGenes - Universities