The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Ventilatory accommodation of changing oxygen demand in sciurid rodents.

Ventilation was measured across a range of O2 consumption rates in four sciurid rodents: Tamias minimus (47 g), Spermophilus lateralis (189 g), S. beecheyi (531 g), and Marmota flaviventris juveniles (1054 g) and adults (2989 g). Maximum thermogenic oxygen consumption was measured for all but adult M. flaviventris. Aerobic scopes (maximum/minimum O2 consumption rates) were 4.6, 3.8, 5.4, and 4.8 in T. minimus, S. lateralis, S. beecheyi, and juvenile M. flaviventris, respectively. Aerobic scope was at least 4.1 in adult M. flaviventris. Ventilatory accommodation of changing O2 consumption rate was qualitatively similar in the four species, with the bulk of accommodation resulting from changes in minute volume. Nevertheless, there were significant differences in the relative importance of frequency, tidal volume, and O2 extraction in accommodation. In all species, frequency and minute volume were strongly correlated to O2 consumption rate. Tidal volume was significantly correlated to O2 consumption rate in T. minimus and S. beecheyi, but not in the other species. Oxygen extraction was not significantly correlated to O2 consumption rate in any species. Analysis of factorial ventilation changes across a standardized 3.8-fold change in O2 consumption rate revealed significant differences among species in frequency and O2 extraction, but not in tidal or minute volume. When compared to a generalized allometry for mammalian resting ventilation, the four sciurid species had consistently lower respiration frequency and higher O2 extraction than predicted, perhaps because the sciurid measurements were made on unrestrained animals. There was no indication that ventilation constrained maximum O2 consumption rate.[1]


  1. Ventilatory accommodation of changing oxygen demand in sciurid rodents. Chappell, M.A. J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol. (1992) [Pubmed]
WikiGenes - Universities