The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Tidal Volume

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tidal Volume

 

Psychiatry related information on Tidal Volume

  • METHOD: Ten patients with panic disorder and six normal control subjects received injections of acetazolamide, 1 g i.v., as per the Mathew et al. protocol, during breath by breath measurement of both tidal volume and frequency of respiration [6].
  • The selective opioid mu receptor agonist dermorphin increased the locomotor activity of rats dose dependently at 10 to 100 pmol/kg i.c.v. Respiratory rate, relative tidal volume and respiratory minute volume also increased unrelated to changes in locomotor activity [7].
  • During wakefulness, the volume threshold (at eupneic fR) averaged 969 +/- 94 ml or 1.3-1.4 times the average eupneic tidal volume; the frequency threshold (at eupneic VT was 14.1 +/- 0.7 min-1 or 1.2 times the average eupneic frequency [8].
  • Medroxyprogesterone acetate elicited chronic increases in inspiratory effect, tidal volume, and alveolar ventilation while awake and during all sleep stages in selected patients with chronic CO2 retention despite severe mechanical impairment and maldistribution ventilation:perfusion [9].
  • However, it is known that during high frequency jet ventilation, PETCO2 may underestimate PaCO2 because of inadequate washout of the anatomical dead space by a small tidal volume and the relatively slow response time of infrared CO2 analyzers [10].
 

High impact information on Tidal Volume

  • Minute ventilation increased by a mean of 18 percent (P less than 0.0001) in the patients taking theophylline because of increased tidal volume, with no change in respiratory frequency [11].
  • Pulmonary compliance fell and the alveolar-arterial O2 gradient widened in normothermic rats during constant ventilation in the resting tidal volume range, and, in hyperthermic rats (approximately 39 degrees C) similarly ventilated but with the addition of periodic sighs [12].
  • These results indicate that the tidal volume and respiratory timing responses to flow loads are impaired in some patients with COPD [13].
  • Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2-30 Hz), low tidal volume ventilation [14].
  • Increased tidal-volume ventilation stimulated secretion; propranolol did not block this effect [15].
 

Chemical compound and disease context of Tidal Volume

 

Biological context of Tidal Volume

 

Anatomical context of Tidal Volume

  • We conclude that in normal humans breathing at rest: (1) aminophylline increases ventilation, promoting larger tidal volume; (2) this effect is due to increased neural drive to inspiratory muscles; (3) aminophylline does not promote any appreciable expiratory muscle recruitment and distortion in the pattern of chest wall motion [26].
  • Treatment with saralasin, 5 mug dissolved in 1 mul saline followed by 9 mul saline in each lateral cerebral ventricle, did not influence tidal volume, but markedly reduced tidal volume variability (p=0.0005), as compared to saline injections (10 mul) [27].
  • In order to investigate the dynamics of both pHecf and neural tidal volume, we measured in cats with cut vagi and sinus nerves the dynamic medullary pHecf changes and the associated changes in integrated phrenic nerve activity after end-tidal CO2 forcing [28].
  • Spinal cord cooling during exercise (0.5 ms-1) at 23 degrees C did not significantly affect O2 consumption, CO2 production, minute volume, tidal volume or respiratory frequency [29].
  • This was accomplished by local application of L-glutamic acid (bilateral application of 5 microliter of a 250-1000 mM solution) and kainic acid (bilateral application of 5 microliter of a 40 mM solution) to the area postrema of chloralose-anesthetized cats while monitoring arterial pressure, heart rate, tidal volume and respiratory rate [30].
 

Associations of Tidal Volume with chemical compounds

  • An improvement in the estimated ratio of ventilatory dead space to tidal volume (VD/VT), an index of physiologic efficiency, occurred throughout exercise during digoxin therapy, and there was a significant negative correlation between the change in maximal oxygen uptake and change in maximal estimated VD/VT (r = -0.63; p less than 0.05) [31].
  • Animals were studied in a volume-displacement body plethysmograph and changes in pulmonary resistance (RL), dynamic compliance (Cdyn), frequency (f) and tidal volume (VT) were plotted against inhaled histamine concentration (0.016 to 64 mg/ml) [32].
  • With the continuous breathing method, each concentration of methacholine is inhaled by tidal volume breathing for 2 min [33].
  • Although heliox improved gas exchange during HFOV in our model, increased tidal volume delivery may limit clinical applicability [34].
  • Compared with placebo, aminophylline induced an increase in ventilation (p < 0.01) that was mainly accounted for by an increase in tidal volume (p = 0.01) [26].
 

Gene context of Tidal Volume

  • When exposed to ventilatory stimuli, Hoxa5(-/-) mice maintain the higher minute ventilation by adapting the tidal volume and/or the breathing frequency [35].
  • Reduction of tidal volume during OLV may reduce alveolar concentrations of TNF-alpha and of sICAM-1 [36].
  • After an injection of CRH a stimulation of respiration could be observed, with an increase of tidal volume over a time interval of a few minutes [37].
  • In wild-type mice acute reduction of AChE by Huperzine A (1 mg/kg) to the level found in asymptomatic heterozygotes, induced tremors but no respiratory depression, whereas the same dose of Huperzine in heterozygote animals further reduced AChE activity, increased tidal volume (V(T)) and decreased breathing frequency (f(R)) [38].
  • Therefore, 9 mutant (ob/ob) and 9 wild-type (+/+) mice were exposed to room air or 100% oxygen and respiratory rate (RR) and tidal volume (Vt) were measured [39].
 

Analytical, diagnostic and therapeutic context of Tidal Volume

  • On the basis of test lung data and plethysmography measurements, we also conclude that heliox improves carbon dioxide elimination primarily through increased tidal volume delivery [34].
  • METHODS: Oxygen saturation (SaO(2)), transcutaneous carbon dioxide (TcCO(2)), minute ventilation (VE), tidal volume (VT), respiratory rate (RR), and diaphragm electromyography (EMGdi) were measured in 15 patients during both modes [40].
  • METHODS--Eight subjects were selected from 34 consecutive asthmatic patients who had previously exhibited a significant increase in respiratory frequency (Rf) and decrease in tidal volume (VT) accompanying a 20% or greater fall in FEV1 during a histamine bronchial provocation test [41].
  • Pain was induced by a modification of the Tourniquet Pain Technique and changes in ventilatory parameters were registered through monitoring of the CO2 response of tidal volume, minute ventilation, respiratory rate and mouth occlusion pressure [42].
  • BACKGROUND: We previously demonstrated a markedly dependent distribution of ventilator-induced lung injury in oleic acid-injured supine animals ventilated with large tidal volumes and positive end-expiratory pressure > or =10 cm H2O [43].

References

  1. The metabolic and ventilatory response to the infusion of stress hormones. Weissman, C., Askanazi, J., Forse, R.A., Hyman, A.I., Milic-Emili, J., Kinney, J.M. Ann. Surg. (1986) [Pubmed]
  2. Hypercapnia via reduced rate and tidal volume contributes to lipopolysaccharide-induced lung injury. Lang, J.D., Figueroa, M., Sanders, K.D., Aslan, M., Liu, Y., Chumley, P., Freeman, B.A. Am. J. Respir. Crit. Care Med. (2005) [Pubmed]
  3. Effects of inspired carbon dioxide on ventilation-perfusion matching in normoxia, hypoxia, and hyperoxia. Swenson, E.R., Robertson, H.T., Hlastala, M.P. Am. J. Respir. Crit. Care Med. (1994) [Pubmed]
  4. Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Boker, A., Graham, M.R., Walley, K.R., McManus, B.M., Girling, L.G., Walker, E., Lefevre, G.R., Mutch, W.A. Am. J. Respir. Crit. Care Med. (2002) [Pubmed]
  5. Diaphragm length during tidal breathing in patients with chronic obstructive pulmonary disease. Gorman, R.B., McKenzie, D.K., Pride, N.B., Tolman, J.F., Gandevia, S.C. Am. J. Respir. Crit. Care Med. (2002) [Pubmed]
  6. The effect of acetazolamide on ventilation in panic disorder patients. Gorman, J.M., Papp, L.A., Coplan, J., Martinez, J., Liebowitz, M.R., Klein, D.F. The American journal of psychiatry. (1993) [Pubmed]
  7. Respiratory and locomotor stimulation by low doses of dermorphin, a mu1 receptor-mediated effect. Paakkari, P., Paakkari, I., Sirén, A.L., Feuerstein, G. J. Pharmacol. Exp. Ther. (1990) [Pubmed]
  8. Frequency and volume thresholds for inhibition of inspiratory motor output during mechanical ventilation. Manchanda, S., Leevers, A.M., Wilson, C.R., Simon, P.M., Skatrud, J.B., Dempsey, J.A. Respiration physiology. (1996) [Pubmed]
  9. Correction of CO2 retention during sleep in patients with chronic obstructive pulmonary diseases. Skatrud, J.B., Dempsey, J.A., Iber, C., Berssenbrugge, A. Am. Rev. Respir. Dis. (1981) [Pubmed]
  10. Monitoring of PETCO2 during high frequency jet ventilation for laryngomicrosurgery. Kil, H.K., Kim, W.O., Choi, H.S., Nam, Y.T. Yonsei Med. J. (2002) [Pubmed]
  11. A randomized, controlled trial of theophylline in patients with severe chronic obstructive pulmonary disease. Murciano, D., Auclair, M.H., Pariente, R., Aubier, M. N. Engl. J. Med. (1989) [Pubmed]
  12. Surfactant deficiency in rats without a decreased amount of extracellular surfactant. Massaro, D., Clerch, L., Temple, D., Baier, H. J. Clin. Invest. (1983) [Pubmed]
  13. Mechanisms underlying CO2 retention during flow-resistive loading in patients with chronic obstructive pulmonary disease. Oliven, A., Kelsen, S.G., Deal, E.C., Cherniack, N.S. J. Clin. Invest. (1983) [Pubmed]
  14. Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2-30 Hz), low tidal volume ventilation. Slutsky, A.S., Kamm, R.D., Rossing, T.H., Loring, S.H., Lehr, J., Shapiro, A.H., Ingram, R.H., Drazen, J.M. J. Clin. Invest. (1981) [Pubmed]
  15. Regulation of secretion in Clara cells: studies using the isolated perfused rat lung. Massaro, G.D., Fischman, C.M., Chiang, M.J., Amado, C., Massaro, D. J. Clin. Invest. (1981) [Pubmed]
  16. The effect of prenatal exposure to carbon monoxide on breathing and growth of the newborn guinea pig. McGregor, H.P., Westcott, K., Walker, D.W. Pediatr. Res. (1998) [Pubmed]
  17. Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Broccard, A.F., Shapiro, R.S., Schmitz, L.L., Ravenscraft, S.A., Marini, J.J. Crit. Care Med. (1997) [Pubmed]
  18. Respiratory effects of baclofen and 3-aminopropylphosphinic acid in guinea-pigs. Hey, J.A., Mingo, G., Bolser, D.C., Kreutner, W., Krobatsch, D., Chapman, R.W. Br. J. Pharmacol. (1995) [Pubmed]
  19. Mechanism of the respiratory action of pentobarbital at the medullary and pontine levels. Hurlé, M.A., Dierssen, M.M., Flórez, J. Eur. J. Pharmacol. (1986) [Pubmed]
  20. Breathing pattern of anesthetized humans during pancuronium-induced partial paralysis. Nishino, T., Yokokawa, N., Hiraga, K., Honda, Y., Mizuguchi, T. J. Appl. Physiol. (1988) [Pubmed]
  21. Improvement of alveolar-capillary membrane diffusing capacity with enalapril in chronic heart failure and counteracting effect of aspirin. Guazzi, M., Marenzi, G., Alimento, M., Contini, M., Agostoni, P. Circulation (1997) [Pubmed]
  22. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Hayano, J., Yasuma, F., Okada, A., Mukai, S., Fujinami, T. Circulation (1996) [Pubmed]
  23. Failure of the circulatory system limits exercise performance in patients with systemic sclerosis. Sudduth, C.D., Strange, C., Cook, W.R., Miller, K.S., Baumann, M., Collop, N.A., Silver, R.M. Am. J. Med. (1993) [Pubmed]
  24. Prospective, randomized comparison of epidural versus parenteral opioid analgesia in thoracic trauma. Moon, M.R., Luchette, F.A., Gibson, S.W., Crews, J., Sudarshan, G., Hurst, J.M., Davis, K., Johannigman, J.A., Frame, S.B., Fischer, J.E. Ann. Surg. (1999) [Pubmed]
  25. Methacholine responsiveness using the raised volume forced expiration technique in infants. Hayden, M.J., Devadason, S.G., Sly, P.D., Wildhaber, J.H., LeSouëf, P.N. Am. J. Respir. Crit. Care Med. (1997) [Pubmed]
  26. Aminophylline and respiratory muscle interaction in normal humans. Gorini, M., Duranti, R., Misuri, G., Valenza, T., Spinelli, A., Goti, P., Gigliotti, F., Scano, G. Am. J. Respir. Crit. Care Med. (1994) [Pubmed]
  27. Intracerebroventricular administration of the angiotensin II receptor antagonist saralasin reduces respiratory rate and tidal volume variability in freely moving Wistar rats. Olsson, M., Annerbrink, K., Hedner, J., Eriksson, E. Psychoneuroendocrinology (2004) [Pubmed]
  28. Dynamics of brain extracellular fluid pH and phrenic nerve activity in cats after end-tidal CO2 forcing. Teppema, L.J., Vis, A., Evers, J.A., Folgering, H.T. Respiration physiology. (1982) [Pubmed]
  29. Respiratory and cardiovascular responses of the exercising chicken to spinal cord cooling at different ambient temperatures. II. Respiratory responses. Gleeson, M., Barnas, G.M., Rautenberg, W. J. Exp. Biol. (1985) [Pubmed]
  30. Chemical stimulation of the area postrema induces cardiorespiratory changes in the cat. Gatti, P.J., Dias Souza, J., Taveira Da Silva, A.M., Quest, J.A., Gillis, R.A. Brain Res. (1985) [Pubmed]
  31. Increased exercise capacity after digoxin administration in patients with heart failure. Sullivan, M., Atwood, J.E., Myers, J., Feuer, J., Hall, P., Kellerman, B., Forbes, S., Froelicher, V. J. Am. Coll. Cardiol. (1989) [Pubmed]
  32. Bronchial response to histamine after inhaled propranolol and atropine in monkeys. Pare, P.D., Nicholls, I. J. Allergy Clin. Immunol. (1982) [Pubmed]
  33. Methacholine challenge--relevance for the allergic athlete. Shapiro, G.G. J. Allergy Clin. Immunol. (1984) [Pubmed]
  34. Heliox improves gas exchange during high-frequency ventilation in a pediatric model of acute lung injury. Katz, A., Gentile, M.A., Craig, D.M., Quick, G., Meliones, J.N., Cheifetz, I.M. Am. J. Respir. Crit. Care Med. (2001) [Pubmed]
  35. Respiratory adaptations to lung morphological defects in adult mice lacking Hoxa5 gene function. Kinkead, R., LeBlanc, M., Gulemetova, R., Lalancette-Hébert, M., Lemieux, M., Mandeville, I., Jeannotte, L. Pediatr. Res. (2004) [Pubmed]
  36. The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Schilling, T., Kozian, A., Huth, C., Bühling, F., Kretzschmar, M., Welte, T., Hachenberg, T. Anesth. Analg. (2005) [Pubmed]
  37. Effects of corticotropin-releasing hormone on respiratory parameters during sleep in normal men. Mann, K., Röschke, J., Benkert, O., Aldenhoff, J., Nink, M., Beyer, J., Lehnert, H. Exp. Clin. Endocrinol. Diabetes (1995) [Pubmed]
  38. Effects of acetylcholinesterase and butyrylcholinesterase inhibition on breathing in mice adapted or not to reduced acetylcholinesterase. Boudinot, E., Taysse, L., Daulon, S., Chatonnet, A., Champagnat, J., Foutz, A.S. Pharmacol. Biochem. Behav. (2005) [Pubmed]
  39. The effect of leptin on the ventilatory responseto hyperoxia. Groeben, H., Meier, S., Brown, R.H., O'Donnell, C.P., Mitzner, W., Tankersley, C.G. Exp. Lung Res. (2004) [Pubmed]
  40. Comparison of proportional assist ventilation and pressure support ventilation in chronic respiratory failure due to neuromuscular and chest wall deformity. Hart, N., Hunt, A., Polkey, M.I., Fauroux, B., Lofaso, F., Simonds, A.K. Thorax (2002) [Pubmed]
  41. Histamine induced changes in breathing pattern may precede bronchoconstriction in selected patients with bronchial asthma. Fanelli, A., Duranti, R., Gorini, M., Spinelli, A., Gigliotti, F., Scano, G. Thorax (1994) [Pubmed]
  42. Experimental pain stimulates respiration and attenuates morphine-induced respiratory depression: a controlled study in human volunteers. Borgbjerg, F.M., Nielsen, K., Franks, J. Pain (1996) [Pubmed]
  43. Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Broccard, A., Shapiro, R.S., Schmitz, L.L., Adams, A.B., Nahum, A., Marini, J.J. Crit. Care Med. (2000) [Pubmed]
 
WikiGenes - Universities