The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response.

Hepatitis C virus (HCV) gene expression disrupts normal endoplasmic reticulum (ER) functions and induces ER stress. ER stress results from the accumulation of unfolded or misfolded proteins in the ER; cells can alleviate this stress by degrading or refolding these proteins. The IRE1-XBP1 pathway directs both protein refolding and degradation in response to ER stress. Like IRE1-XBP1, other branches of the ER stress response mediate protein refolding. However, IRE1-XBP1 can also specifically activate protein degradation. We show here that XBP1 expression is elevated in cells carrying HCV subgenomic replicons, but XBP1 trans-activating activity is repressed. This prevents the IRE1-XBP1 transcriptional induction of EDEM ( ER degradation-enhancing alpha-mannosidase-like protein). The mRNA expression of EDEM is required for the degradation of misfolded proteins. Consequently, misfolded proteins are stable in cells expressing HCV replicons. HCV may suppress the IRE1-XBP1 pathway to stimulate the synthesis of its viral proteins. IRE1alpha-null MEFs, a cell line with a defective IRE1-XBP1 pathway, show elevated levels of HCV IRES-mediated translation. Therefore, HCV may suppress the IRE1-XBP1 pathway to not only promote HCV expression but also to contribute to the persistence of the virus in infected hepatocytes.[1]

References

  1. Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. Tardif, K.D., Mori, K., Kaufman, R.J., Siddiqui, A. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities