The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Modulation of the stathmin-like microtubule destabilizing activity of RB3, a neuron-specific member of the SCG10 family, by its N-terminal domain.

RB3 is a neuron-specific homologue of the SCG10/stathmin family proteins, possessing a unique N-terminal membrane-associated domain and the stathmin-like domain at the C terminus, which promotes microtubule (MT) catastrophe and/or tubulin sequestering. We examined herein the contribution of the N-terminal subdomain of RB3 to the regulation of MT dynamics. To begin with, we determined the effects of full-length (RB3-f) and short truncated (RB3-s) forms of RB3 on the polymerization of MT in vitro. RB3-s had a deletion of amino acids 1-75 from the N terminus, leaving the so-called stathmin-like domain, consisting of residues 76-217. Although both RB3-f and RB3-s exhibited MT-depolymerizing activity, RB3-f was less effective. The binding affinity for tubulin was also lower in RB3-f. Direct observation of the dynamics of individual MTs using dark field microscopy revealed that RB3-s slowed MT elongation velocity, increased catastrophes, and reduced rescues. This effect is almost identical to that by stathmin/oncoprotein 18. On the other hand, the MT elongation rate increased at lower concentrations of RB3-f. In addition, RB3-f, indicated higher rescue frequency than control as well as the catastrophe in a dose-dependent manner. The functionality of RB3-f indicated that full-length RB3 has not only stathmin-like MT destabilizing activity but also MT-associated protein-like MT stabilizing activity. Possibly, the balance of these activities is altered in a concentration-dependent manner in vitro. This interesting regulatory role of the unique N-terminal domain of RB3 in MT dynamics would contribute to the physiological regulation of neuronal morphogenesis.[1]

References

 
WikiGenes - Universities