The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Palmitylation of a G-protein coupled receptor. Direct analysis by tandem mass spectrometry.

Bovine rhodopsin has been reported to be S-palmitylated at cysteines 322 and 323 (Ovchinnikov, Y. A., Abdulaev, N. G., and Bogachuk, A.S. (1988) FEBS Lett. 230, 1-5). Using a combination of enzymatic and chemical cleavage techniques in conjunction with tandem mass spectrometry, the sites of incorporation of the palmityl groups are shown. Bovine rhodopsin in disc membranes was digested with thermolysin to generate the C-terminal fragment (241-327), which was subsequently cleaved with cyanogen bromide to generate the peptide Val-Thr-Thr-Leu-Cys-Cys-Gly-Lys-Asn-Pro (318-327). A bis-S-palmitylated synthetic standard had the same retention time by reversed-phase high performance liquid chromatography as the isolated peptide and the same molecular weight (MH+1511.7) by liquid secondary ion mass spectrometry. Dithiothreitol reduction of both the isolated and the synthetic peptide cleaved the two thioester-linked palmityl groups to produce reduction products of the same appropriately decreased molecular weight (MH+1035.5). Tandem mass spectrometry of the isolated and the synthetic peptide identified the sites of attachment of the palmityl groups on cysteines 322 and 323. These results prove the modification of cysteines 322 and 323 with palmitic acid in bovine rhodopsin, and illustrate the utility of mass spectrometry to characterize the post-translational modifications in G-protein coupled receptors.[1]

References

  1. Palmitylation of a G-protein coupled receptor. Direct analysis by tandem mass spectrometry. Papac, D.I., Thornburg, K.R., Büllesbach, E.E., Crouch, R.K., Knapp, D.R. J. Biol. Chem. (1992) [Pubmed]
 
WikiGenes - Universities