The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phenprocoumon in healthy volunteers.

CYP2C9 catalyses the biotransformation of the oral anticoagulants S-warfarin and R- and S-acenocoumarol. According to data obtained in vitro, phenprocoumon is also metabolized by CYP2C9 but the impact of the CYP2C9 polymorphism on phenprocoumon pharmacokinetics has not been studied. Twenty-six healthy heterozygous and homozygous carriers of the CYP2C9 alleles *1 (wild-type), *2 (Arg144Cys), and *3 (Ile359Leu) received a single oral dose of 12 mg of racemic phenprocoumon. Plasma and 12 h urine concentrations of both enantiomers and their monohydroxylated metabolites were measured by high-performance liquid chromatography with mass spectrometry detection. No significant effect of the CYP2C9 variants *2 and *3 on R-phenprocoumon pharmacokinetic parameters was detected, but S-phenprocoumon clearance tended to decrease with increasing number of CYP2C9*2 and *3 alleles. The ratios of S- to R-phenprocoumon plasma clearances were higher with a median of 0.95 in carriers of *1/*1 versus 0.65 in *3/*3 (P < 0.001 for trend). Plasma and urine concentrations of 4'-, 6- and 7-hydroxyphenprocoumon were significantly lower in homozygous carriers of the CYP2C9*2 and *3 variants compared to CYP2C9*1/*1. Carriers of CYP2C9*3/*3 had a median AUC of (R,S) 7-OH-phenprocoumon of only approximately 25% compared to the wild-type genotype. The AUC of (R,S) 6-OH-phenprocoumon was only approximately 50% in CYP2C9*3/*3 compared to the homozygous wild-type genotype. In conclusion, carriers of CYP2C9*2 and *3 alleles had a lower metabolic capacity regarding phenprocoumon hydroxylation than those with CYP2C9*1/*1. However, regarding phenprocoumon hydroxylation CYP2C9 genotypes had only marginal effects on S- and R-phenprocoumon total clearance in healthy volunteers.[1]

References

  1. Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phenprocoumon in healthy volunteers. Kirchheiner, J., Ufer, M., Walter, E.C., Kammerer, B., Kahlich, R., Meisel, C., Schwab, M., Gleiter, C.H., Rane, A., Roots, I., Brockmöller, J. Pharmacogenetics (2004) [Pubmed]
 
WikiGenes - Universities