Modulation of HepG2 cell net apolipoprotein B secretion by the citrus polymethoxyflavone, tangeretin.
The purpose of the present study was to examine the role of tangeretin, a polymethoxylated flavone from citrus fruits, on the regulation of apolipoprotein B (apoB) and lipid metabolism in the human hepatoma cell-line HepG2. The marked reduction in apoB secretion observed in cells incubated with 72.8 microM tangeretin was rapid, apoB-specific, and partly reversible. The reduction also was observed under lipid-rich conditions and found to be insensitive to proteasomal degradation of nascent apoB. We followed our study by examining lipid synthesis and mass. A 24-h exposure of cells to 72.8 microM tangeretin decreased intracellular synthesis of cholesteryl esters, free cholesterol, and TAG by 82, 45, and 64%, respectively; tangeretin also reduced the mass of cellular TAG by 37%. The tangeretin-induced suppression of TAG synthesis and mass were associated with decreased activities of DAG acyltransferase (up to -39.0 +/- 3.0% vs. control) and microsomal triglyceride transfer protein (up to -35.5 +/- 2.5% vs. control). Tangeretin was also found to activate the peroxisome proliferator-activated receptor, a transcription factor with a positive regulatory impact on FA oxidation and TAG availability (up to 36% increase vs. control). The data suggest that tangeretin modulates apoB-containing lipoprotein metabolism through multiple mechanisms.[1]References
- Modulation of HepG2 cell net apolipoprotein B secretion by the citrus polymethoxyflavone, tangeretin. Kurowska, E.M., Manthey, J.A., Casaschi, A., Theriault, A.G. Lipids (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg