The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The DNA binding protein H-NS binds to and alters the stability of RNA in vitro and in vivo.

H-NS is an abundant prokaryotic transcription factor that preferentially binds to intrinsically bent DNA. Although H-NS has been shown to reduce the transcription of over 100 genes, evidence suggests that H-NS can also affect the translation of some genes. One such gene, rpoS, specifies a sigma factor, RpoS. The ability of H-NS to bind to the rpoS mRNA and the non-coding RNA regulator, DsrA, was tested. Electrophoretic mobility-shift assays yielded an apparent binding affinity of H-NS binding to curved DNA of approximately 1 microM, whereas binding to rpoS mRNA or DsrA RNA was approximately 3 microM. This RNA binding was not prevented by an excess of competitor yeast RNA, suggesting that H-NS specifically bound these RNAs. Footprint analysis with a single strand-specific ribonuclease was used to identify the H-NS binding site(s) on DsrA and rpoS mRNA. Surprisingly, H-NS appeared to enhance the cleavage of DsrA and rpoS mRNA. The enhanced cleavage was at sites that were predicted to be single-stranded and did not result from contaminating nucleases in the H-NS protein preparation or non-specific effects of the nuclease. Quantitative RT-PCR of RNA isolated from wild-type and hns- strains revealed that H-NS also affects the stability of DsrA in vivo. Thus H-NS appears to modulate RNA stability in vivo and in vitro.[1]


  1. The DNA binding protein H-NS binds to and alters the stability of RNA in vitro and in vivo. Brescia, C.C., Kaw, M.K., Sledjeski, D.D. J. Mol. Biol. (2004) [Pubmed]
WikiGenes - Universities