The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Cross-packaging of human immunodeficiency virus type 1 vector RNA by spleen necrosis virus proteins: construction of a new generation of spleen necrosis virus-derived retroviral vectors.

The ability of the nonlentiviral retrovirus spleen necrosis virus (SNV) to cross-package the genomic RNA of the distantly related human immunodeficiency virus type 1 (HIV-1) and vice versa was analyzed. Such a model may allow us to further study HIV-1 replication and pathogenesis, as well as to develop safe gene therapy vectors. Our results suggest that SNV can cross-package HIV-1 genomic RNA but with lower efficiency than HIV-1 proteins. However, HIV-1-specific proteins were unable to cross-package SNV RNA. We also constructed SNV-based gag-pol chimeric variants by replacing the SNV integrase with the HIV-1 integrase, based on multiple sequence alignments and domain analyses. These analyses revealed that there are conserved domains in all retroviral integrase open reading frames (orf), despite the divergence in the primary sequences. The transcomplementation assays suggested that SNV proteins recognized one of the chimeric variants. This demonstrated that HIV-1 integrase is functional in the SNV gag-pol orf with a lower transduction efficiency, utilizing homologous (SNV) RNA, as well as the heterologous vector RNA of HIV-1. These findings suggest that homology in the conserved sequences of the integrase protein may not be fully competent in the replacement of protein(s) from one retrovirus to another, and there are likely several other factors involved in each of the steps related to replication, integration, and infection. However, further studies to dissect the gag-pol region will be critical for understanding the mechanisms involved in the cleavage of reverse transcriptase, RNase H, and integrase. These studies should provide further insight into the design and development of novel molecular approaches to block HIV-1 replication and to construct a new generation of SNV-based vectors.[1]


WikiGenes - Universities